a) Prove 2 {y }=$ £{y} -y (0) Using the integral definition of Laplace transform: 2 {FH)} = So f (t) e-st dt v=y' V= est - Need Integration by parts L {y} = 5 y'e "dt any dva-ser yout 1. - 3. - Sye" dt. 1. 6 2 {y'} = -1²0) = 550=² ye₁²³ 124 y(c) де а L {y} = s£ {y}-gcol using дидор prove £ {y" } = 5²4 - syco) - y'(o) L y the fact A J c) Find £ {y''} with the same pattern.
a) Prove 2 {y }=$ £{y} -y (0) Using the integral definition of Laplace transform: 2 {FH)} = So f (t) e-st dt v=y' V= est - Need Integration by parts L {y} = 5 y'e "dt any dva-ser yout 1. - 3. - Sye" dt. 1. 6 2 {y'} = -1²0) = 550=² ye₁²³ 124 y(c) де а L {y} = s£ {y}-gcol using дидор prove £ {y" } = 5²4 - syco) - y'(o) L y the fact A J c) Find £ {y''} with the same pattern.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I managed to get the first part, but I am not quite sure how to use the deriviative concept I am given.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,