a) Prove 2 {y }=$ £{y} -y (0) Using the integral definition of Laplace transform: 2 {FH)} = So f (t) e-st dt v=y' V= est - Need Integration by parts L {y} = 5 y'e "dt any dva-ser yout 1. - 3. - Sye" dt. 1. 6 2 {y'} = -1²0) = 550=² ye₁²³ 124 y(c) де а L {y} = s£ {y}-gcol using дидор prove £ {y" } = 5²4 - syco) - y'(o) L y the fact A J c) Find £ {y''} with the same pattern.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I managed to get the first part, but I am not quite sure how to use the deriviative concept I am given.

### Educational Content: Laplace Transform of Derivatives

#### Problem Overview

**a) Prove:**  
\[
\mathcal{L} \{ y' \} = s \mathcal{L} \{ y \} - y(0)
\]  
using the integral definition of the Laplace transform:  
\[
\mathcal{L} \{ f(t) \} = \int_0^\infty f(t) e^{-st} \, dt
\]  
**Note:** Integration by parts is needed.

**Steps:**

1. Begin with:
   \[
   \mathcal{L} \{ y' \} = \int_0^\infty y' e^{-st} \, dt
   \]
2. Use integration by parts:
   - Let \( u = y', \, dv = e^{-st} \, dt \)
   - Then \( du = y'', \, v = -\frac{1}{s} e^{-st} \)

3. Apply the formula:
   \[
   \left[ y e^{-st} \right]_0^\infty - \int_0^\infty (-s y) e^{-st} \, dt
   \]
4. Resolve the limits and the resulting integral:
   \[
   \mathcal{L} \{ y' \} = -y(0) + s \int_0^\infty y e^{-st} \, dt
   \]
5. Final form:
   \[
   \mathcal{L} \{ y' \} = s \mathcal{L} \{ y \} - y(0)
   \]

**b) Using part (a) and the fact \( y'' = (y')' \), prove:**  
\[
\mathcal{L} \{ y'' \} = s^2 \mathcal{L} \{ y \} - s y(0) - y'(0)
\]

**c) Find**  
\[
\mathcal{L} \{ y''' \}
\]  
**using the same pattern.**

*Explanation:*

This set of problems involves finding the Laplace transforms of derivatives. The solutions involve integrating by parts and using the recursive property of derivatives and their transforms. Part (a) builds the foundational equation that is used in part
Transcribed Image Text:### Educational Content: Laplace Transform of Derivatives #### Problem Overview **a) Prove:** \[ \mathcal{L} \{ y' \} = s \mathcal{L} \{ y \} - y(0) \] using the integral definition of the Laplace transform: \[ \mathcal{L} \{ f(t) \} = \int_0^\infty f(t) e^{-st} \, dt \] **Note:** Integration by parts is needed. **Steps:** 1. Begin with: \[ \mathcal{L} \{ y' \} = \int_0^\infty y' e^{-st} \, dt \] 2. Use integration by parts: - Let \( u = y', \, dv = e^{-st} \, dt \) - Then \( du = y'', \, v = -\frac{1}{s} e^{-st} \) 3. Apply the formula: \[ \left[ y e^{-st} \right]_0^\infty - \int_0^\infty (-s y) e^{-st} \, dt \] 4. Resolve the limits and the resulting integral: \[ \mathcal{L} \{ y' \} = -y(0) + s \int_0^\infty y e^{-st} \, dt \] 5. Final form: \[ \mathcal{L} \{ y' \} = s \mathcal{L} \{ y \} - y(0) \] **b) Using part (a) and the fact \( y'' = (y')' \), prove:** \[ \mathcal{L} \{ y'' \} = s^2 \mathcal{L} \{ y \} - s y(0) - y'(0) \] **c) Find** \[ \mathcal{L} \{ y''' \} \] **using the same pattern.** *Explanation:* This set of problems involves finding the Laplace transforms of derivatives. The solutions involve integrating by parts and using the recursive property of derivatives and their transforms. Part (a) builds the foundational equation that is used in part
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,