A price p (in dollars) and demand x (in items) for a product are related by 2a? + 6xp + 50p : = 23200. If the price is increasing at a rate of 2 dollars per month when the price is 20 dollars, find the rate of change of the demand The rate of change of demand is items per month.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question

Can you help me with this question?

**Transcription for Educational Website:**

**Problem Statement:**

You have 3 attempts remaining.

A price \( p \) (in dollars) and demand \( x \) (in items) for a product are related by the equation:

\[ 2x^2 + 6xp + 5p^2 = 23200. \]

If the price is increasing at a rate of 2 dollars per month when the price is 20 dollars, find the rate of change of the demand.

The rate of change of demand is \(\_\_\_\_\) items per month.

*(Note: The blank space is intended for the answer to be filled in.)*

**Explanation:**

This equation relates the price and demand of a product and requires solving for the rate of change of demand with respect to time, given a rate of change of price. This can be solved using implicit differentiation.
Transcribed Image Text:**Transcription for Educational Website:** **Problem Statement:** You have 3 attempts remaining. A price \( p \) (in dollars) and demand \( x \) (in items) for a product are related by the equation: \[ 2x^2 + 6xp + 5p^2 = 23200. \] If the price is increasing at a rate of 2 dollars per month when the price is 20 dollars, find the rate of change of the demand. The rate of change of demand is \(\_\_\_\_\) items per month. *(Note: The blank space is intended for the answer to be filled in.)* **Explanation:** This equation relates the price and demand of a product and requires solving for the rate of change of demand with respect to time, given a rate of change of price. This can be solved using implicit differentiation.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Data Collection, Sampling Methods, and Bias
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning