A power station is to supply four regions of loads whose peak values are 10,000 kW, 5000 kW, 8000 kW and 7000 kW. The diversity factor of the load at the station is 1.5 and the average annual load factor is 60%. Calculate the maximum demand on the station and annual energy supplied from the station. [20,000 kW; 105-12 x 10° kWh] A generating station supplies the following loads : 15000 kW, 12000 kW, 8500 kW, 6000 kW and 450 kW. The station has a maximum demand of 22000 kW. The annual load factor of the station is 48%. Calculate (i) the number of units supplied annually (ii) the diversity factor and (ii) the demand factor.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
2. A 100 MW powers stations delivers 100 MW for 2 hours, 50 MW för 8 hours and is shut down for the
rest of each day. It is also shut down for maintenance for 60 days each year. Calculate its annual load
121%|
3. A power station is to supply four regions of loads whose peak values are 10,000 kW, 5000 kW, 8000kW
and 7000 kW. The diversity factor of the load at the station is 1.5 and the average annual load factor is
60%. Calculate the maximum demand on the station and annual energy supplied from the station.
factor.
[20,000 kW; 105-12 x 10° kWh]
4. A generating station supplies the following loads : 15000 kW, 12000 kW, 8500 kW, 6000 kW and 450
kW. The station has a maximum demand of 22000 kW. The annual load factor of the station is 48%.
Calculate (i) the number of units supplied annually (ii) the diversity factor and (iii) the demand factor.
|6) 925 x 10° kWh (ii) 52-4% (iii) 1-9]
5. A generating station has a maximum demand of 20 MW, a load factor of 60%, a plant capacity factor of
48% and a plant use factor of 80% . Find :
(i) the daily energy produced
(ii) the reserve capacity of the plant
Transcribed Image Text:2. A 100 MW powers stations delivers 100 MW for 2 hours, 50 MW för 8 hours and is shut down for the rest of each day. It is also shut down for maintenance for 60 days each year. Calculate its annual load 121%| 3. A power station is to supply four regions of loads whose peak values are 10,000 kW, 5000 kW, 8000kW and 7000 kW. The diversity factor of the load at the station is 1.5 and the average annual load factor is 60%. Calculate the maximum demand on the station and annual energy supplied from the station. factor. [20,000 kW; 105-12 x 10° kWh] 4. A generating station supplies the following loads : 15000 kW, 12000 kW, 8500 kW, 6000 kW and 450 kW. The station has a maximum demand of 22000 kW. The annual load factor of the station is 48%. Calculate (i) the number of units supplied annually (ii) the diversity factor and (iii) the demand factor. |6) 925 x 10° kWh (ii) 52-4% (iii) 1-9] 5. A generating station has a maximum demand of 20 MW, a load factor of 60%, a plant capacity factor of 48% and a plant use factor of 80% . Find : (i) the daily energy produced (ii) the reserve capacity of the plant
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Sinusoids and phasors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,