A power plant operates in an idealized Rankine cycle, using water as the working fluid (Figure 3). The steam at the exit of the boiler has a pressure of 6 MPa and temperature of 600 °C (point 1). The water at the exit of the condenser has a pressure of 15 kPa (point 3). The condenser employs a nearby river as the cooling source, which can be regarded to have a constant temperature of 25 °C. The mass flow rate of the steam is 80 kg/s. The hot reservoir has a temperature of 1400 K. Regard water as an incompressible liquid. During pumping, the density of water remains unchanged as Point 3 in Figure 3. lin Boiler i wwwwww Pump Turbine 4 lout Cooling water Condenser
A power plant operates in an idealized Rankine cycle, using water as the working fluid (Figure 3). The steam at the exit of the boiler has a pressure of 6 MPa and temperature of 600 °C (point 1). The water at the exit of the condenser has a pressure of 15 kPa (point 3). The condenser employs a nearby river as the cooling source, which can be regarded to have a constant temperature of 25 °C. The mass flow rate of the steam is 80 kg/s. The hot reservoir has a temperature of 1400 K. Regard water as an incompressible liquid. During pumping, the density of water remains unchanged as Point 3 in Figure 3. lin Boiler i wwwwww Pump Turbine 4 lout Cooling water Condenser
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
Step 1: given data
turbine inlet temperature T=600
turbine inlet pressure=P 6 MP a
condenser pressure P= 15 KP. a
flow rate of steam m= 80 kg/s
hot reservoir temperature T=1400K
to find
(a) the power of the pump
(b) the rate of heat transfer inside the boiler
(c) the power of the turbine
(d) the rate of heat transfer inside the condenser
(e) the thermal efficiency of the power plant
(f) entropy generated
Step by step
Solved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY