A population of fish is living in an environment with limited resources. This environment can only support the population if it contains no more than M fish (otherwise some fish would starve due to an inadequate supply of food, etc.). There is considerable evidence to support the theory that, for some fish species, there is a minimum population m such that the species will become extinct if the size of the population falls below m. Such a population can be modelled using a modified logistic equation: dP = kP dt P 1- т 1- (a) Use the differential equation to show that any solution is increasing if m < P < M and decreasing if 0 < P < m. (b) For the case where k = 1, M = 100, 000 and m = 10,000, draw a direction field and use it to sketch several solutions for various initial populations. What are the equilibrium solutions? (c) One can show that k(M-m)t М (Ро — т)е м -m(Po- M) E(M=m), (Po- M) P(t) = (Po – m)eM is a solution with initial population P(0) = Po. Use this to show that, if P(0) < m, then there is a time t at which P(t) = 0 (and so the population will be extinct).
A population of fish is living in an environment with limited resources. This environment can only support the population if it contains no more than M fish (otherwise some fish would starve due to an inadequate supply of food, etc.). There is considerable evidence to support the theory that, for some fish species, there is a minimum population m such that the species will become extinct if the size of the population falls below m. Such a population can be modelled using a modified logistic equation: dP = kP dt P 1- т 1- (a) Use the differential equation to show that any solution is increasing if m < P < M and decreasing if 0 < P < m. (b) For the case where k = 1, M = 100, 000 and m = 10,000, draw a direction field and use it to sketch several solutions for various initial populations. What are the equilibrium solutions? (c) One can show that k(M-m)t М (Ро — т)е м -m(Po- M) E(M=m), (Po- M) P(t) = (Po – m)eM is a solution with initial population P(0) = Po. Use this to show that, if P(0) < m, then there is a time t at which P(t) = 0 (and so the population will be extinct).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 1 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,