A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights (in centimeters) of randomly selected presidents along with the heights of their main opponents. Complete parts (a) and (b) below. Height (cm) of President 183 176 174 180 191 168 D Height (cm) of Main Opponent 174 172 173 172 192 173 a. Use the sample data with a 0.01 significance level to test the claim that for the population of heights for presidents and their main opponents, the differences have a mean greater than 0 cm. In this example, H, is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the president's height minus their main opponent's height. What are the null and alternative hypotheses for the hypothesis test? cm H Pd (Type integers or decimals. Do not round.) cm Identify the test statistic. t= (Round to two decimal places as needed.) Identify the P-value. P-value =(Round to three decimal places as needed.) What is the conclusion based on the hypothesis test? sufficient evidence to support the Since the P-value is less than or equal to the significance level, fail to reject the null hypothesis. There claim that presidents tend to be taller than their opponents. b. Construct the confidence interval that could be used for the hypothesis test described in part (a). What feature of the confidence interval leads to th same conclusion reached in part (a)? The confidence interval is cm

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Need help with statistics

A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights (in centimeters) of
randomly selected presidents along with the heights of their main opponents. Complete parts (a) and (b) below.
Height (cm) of President
Height (cm) of Main Opponent 174 172 173 172 192 173
183 176 174 180 191 168
a. Use the sample data with a 0.01 significance level to test the claim that for the population of heights for presidents and their main opponents, the
differences have a mean greater than 0 cm.
In this example, µ, is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the
president's height minus their main opponent's height. What are the null and alternative hypotheses for the hypothesis test?
Ho Pd
cm
H Pa
(Type integers or decimals. Do not round.)
cm
%3D
Identify the test statistic.
t= (Round to two decimal places as needed.)
Identify the P-value.
P-value = (Round to three decimal places as needed.)
What is the conclusion based on the hypothesis test?
sufficient evidence to support the
Since the P-value is less than or equal to the significance level. fail to reject the null hypothesis. There
claim that presidents tend to be taller than their opponents.
b. Construct the confidence interval that could be used for the hypothesis test described in part (a). What feature of the confidence interval leads to the
same conclusion reached in part (a)?
The confidence interval is cm<p, <|
cm.
(Round to one decimal place as needed.)
What feature of the confidence interval leads to the same conclusion reached in part (a)?
reject
the null hypothesis.
Since the confidence interval contains only negative numbers,
Transcribed Image Text:A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights (in centimeters) of randomly selected presidents along with the heights of their main opponents. Complete parts (a) and (b) below. Height (cm) of President Height (cm) of Main Opponent 174 172 173 172 192 173 183 176 174 180 191 168 a. Use the sample data with a 0.01 significance level to test the claim that for the population of heights for presidents and their main opponents, the differences have a mean greater than 0 cm. In this example, µ, is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the president's height minus their main opponent's height. What are the null and alternative hypotheses for the hypothesis test? Ho Pd cm H Pa (Type integers or decimals. Do not round.) cm %3D Identify the test statistic. t= (Round to two decimal places as needed.) Identify the P-value. P-value = (Round to three decimal places as needed.) What is the conclusion based on the hypothesis test? sufficient evidence to support the Since the P-value is less than or equal to the significance level. fail to reject the null hypothesis. There claim that presidents tend to be taller than their opponents. b. Construct the confidence interval that could be used for the hypothesis test described in part (a). What feature of the confidence interval leads to the same conclusion reached in part (a)? The confidence interval is cm<p, <| cm. (Round to one decimal place as needed.) What feature of the confidence interval leads to the same conclusion reached in part (a)? reject the null hypothesis. Since the confidence interval contains only negative numbers,
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman