A penguin of mass, m, is on an inclined surface (hill), as shown in the diagram. The inclined surface is at an angle of 0 from the flat ground. The coefficient of static friction, µs = 0.498 and the coefficient of kinetic friction, H = 0.295. Also assume there is a force from gravity (i.e. the weight, W = mg, is pointed straight down towards the ground, as always). a) Draw a free body diagram for the penguin, with the coordinate system rotated so that the x-axis is parallel to inclined plane (see Lecture 18, slide 5 for an example). You must draw the coordinate system like we do in class. Label all forces. Note: in this coordinate system, the weight is not aligned with x or y, so make sure you also draw and label the components of the weight vector. Write the components of weight in terms of m, g, and 0.
A penguin of mass, m, is on an inclined surface (hill), as shown in the diagram. The inclined surface is at an angle of 0 from the flat ground. The coefficient of static friction, µs = 0.498 and the coefficient of kinetic friction, H = 0.295. Also assume there is a force from gravity (i.e. the weight, W = mg, is pointed straight down towards the ground, as always). a) Draw a free body diagram for the penguin, with the coordinate system rotated so that the x-axis is parallel to inclined plane (see Lecture 18, slide 5 for an example). You must draw the coordinate system like we do in class. Label all forces. Note: in this coordinate system, the weight is not aligned with x or y, so make sure you also draw and label the components of the weight vector. Write the components of weight in terms of m, g, and 0.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
please show work clearly
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON