A pendulum of length L = 1.0 meter and bob of mass m = 1.0 kg is released from rest at an angle θ = 30 degrees. When the pendulum reaches the vertical position, the bob strikes a cube with mass M = 3.0 kg that is resting on a frictionless table of height h = 0.85 m. d. Determine how far away from the bottom edge of the table, Δx, the cube will strike the floor e. At the location where the cube would have struck the floor, there is now a small cart of mass M = 3.0 kg and negligible height. The cube lands on the cart, and sticks to the cart in a completely *inelastic* collision. Ignore friction. Calculate the horizontal velocity of the cart just after the cube lands on it.
A pendulum of length L = 1.0 meter and bob of mass m = 1.0 kg is released from rest at an angle θ = 30 degrees. When the pendulum reaches the vertical position, the bob strikes a cube with mass M = 3.0 kg that is resting on a frictionless table of height h = 0.85 m.
d. Determine how far away from the bottom edge of the table, Δx, the cube will strike the floor
e. At the location where the cube would have struck the floor, there is now a small cart of mass M = 3.0 kg and negligible height. The cube lands on the cart, and sticks to the cart in a completely *inelastic* collision. Ignore friction. Calculate the horizontal velocity of the cart just after the cube lands on it.
Trending now
This is a popular solution!
Step by step
Solved in 8 steps with 8 images