A pendulum consists of a 2.0 kg stone swinging on a 4.0 m string of negligible mass. The stone has a speed of 8.0 m/s when it passes its lowest point. (a) What is the speed when the string is at 60 to the vertical? (b) What is the greatest angle with the vertical that the string will reach during the stone’s motion? (c) If the potential energy of the pendulum–Earth system is taken to be zero at the stone’s lowest point, what is the total mechanical energy of the system?
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
A pendulum consists of a 2.0 kg stone swinging on a
4.0 m string of negligible mass. The stone has a speed of 8.0 m/s
when it passes its lowest point. (a) What is the speed when the
string is at 60 to the vertical? (b) What is the greatest angle with
the vertical that the string will reach during the stone’s motion?
(c) If the potential energy of the pendulum–Earth system is taken
to be zero at the stone’s lowest point, what is the total mechanical
energy of the system?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images