A particle has position function r(t) and velocity function v(t) = { 2e“, sin(−t), ln(t+1) ) (a) Find its acceleration function a(t). (b) At time t=0, its position is r(0)=i+k. Find r(t).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement

A particle has position function \( \mathbf{r}(t) \) and velocity function \( \mathbf{v}(t) = \left\langle 2e^{-t}, \sin(-t), \ln(t+1) \right\rangle \).

#### (a) Find its **acceleration function** \( \mathbf{a}(t) \).

#### (b) At time \( t = 0 \), its position is \( \mathbf{r}(0) = \mathbf{i} + \mathbf{k} \). Find \( \mathbf{r}(t) \).

#### Solution Explanation

- The velocity function given is \( \mathbf{v}(t) = \left\langle 2e^{-t}, \sin(-t), \ln(t+1) \right\rangle \).

**Part (a): Acceleration Function**
To find the acceleration function \( \mathbf{a}(t) \), we need to take the derivative of the velocity function \( \mathbf{v}(t) \) with respect to time \( t \).

1. **Component-wise Differentiation**:
   - The first component of \( \mathbf{v}(t) \) is \( 2e^{-t} \). Its derivative is \( -2e^{-t} \).
   - The second component of \( \mathbf{v}(t) \) is \( \sin(-t) \). Its derivative is \( -\cos(-t) \), which simplifies to \( -\cos(t) \) (since cosine is an even function).
   - The third component of \( \mathbf{v}(t) \) is \( \ln(t+1) \). Its derivative is \( \frac{1}{t+1} \).

Thus, the acceleration function \( \mathbf{a}(t) \) is:
\[ 
\mathbf{a}(t) = \left\langle -2e^{-t}, -\cos(t), \frac{1}{t+1} \right\rangle 
\]

**Part (b): Position Function**
To find the position function \( \mathbf{r}(t) \), we must integrate the velocity function \( \mathbf{v}(t) \) and use the given initial condition \( \mathbf{r}(0) = \mathbf{i} + \mathbf{k} \).

1. **Component-wise
Transcribed Image Text:### Problem Statement A particle has position function \( \mathbf{r}(t) \) and velocity function \( \mathbf{v}(t) = \left\langle 2e^{-t}, \sin(-t), \ln(t+1) \right\rangle \). #### (a) Find its **acceleration function** \( \mathbf{a}(t) \). #### (b) At time \( t = 0 \), its position is \( \mathbf{r}(0) = \mathbf{i} + \mathbf{k} \). Find \( \mathbf{r}(t) \). #### Solution Explanation - The velocity function given is \( \mathbf{v}(t) = \left\langle 2e^{-t}, \sin(-t), \ln(t+1) \right\rangle \). **Part (a): Acceleration Function** To find the acceleration function \( \mathbf{a}(t) \), we need to take the derivative of the velocity function \( \mathbf{v}(t) \) with respect to time \( t \). 1. **Component-wise Differentiation**: - The first component of \( \mathbf{v}(t) \) is \( 2e^{-t} \). Its derivative is \( -2e^{-t} \). - The second component of \( \mathbf{v}(t) \) is \( \sin(-t) \). Its derivative is \( -\cos(-t) \), which simplifies to \( -\cos(t) \) (since cosine is an even function). - The third component of \( \mathbf{v}(t) \) is \( \ln(t+1) \). Its derivative is \( \frac{1}{t+1} \). Thus, the acceleration function \( \mathbf{a}(t) \) is: \[ \mathbf{a}(t) = \left\langle -2e^{-t}, -\cos(t), \frac{1}{t+1} \right\rangle \] **Part (b): Position Function** To find the position function \( \mathbf{r}(t) \), we must integrate the velocity function \( \mathbf{v}(t) \) and use the given initial condition \( \mathbf{r}(0) = \mathbf{i} + \mathbf{k} \). 1. **Component-wise
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning