A parcel of air moving in a straight tube with a constant acceleration of -4.00 m/s2 has a velocity of 13.0 m/s at 10:05:00 a.m. (a) What is its velocity at 10:05:01 a.m.? (b) At 10:05:04 a.m.? (c) At 10:04:59 a.m.? (d) Describe theshape of a graph of velocity versus time for this parcel of air. (e) Argue for or against the following statement: “Knowing the single value of an object’s constant acceleration is like knowing a whole list of values for its velocity.”
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A parcel of air moving in a straight tube with a constant acceleration of -4.00 m/s2 has a velocity of 13.0 m/s at 10:05:00 a.m. (a) What is its velocity at 10:05:01 a.m.? (b) At 10:05:04 a.m.? (c) At 10:04:59 a.m.? (d) Describe the
shape of a graph of velocity versus time for this parcel of air. (e) Argue for or against the following statement: “Knowing the single value of an object’s constant acceleration is like knowing a whole list of values for its velocity.”
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images