A parachutist wants to design a parachute, such that a person weighing 150 lbs(667N) descends at a rate of 5.00 mph(2.23 m/s). To calculate the drag coefficient in kg/m, is the way to conceptualize the solution: 1. At terminal velocity the drag force equals the force of gravity. Since the net forces are zero, there is no acceleration and the velocity is constant. 2. The drag constant b is not 1. It comes from the terminal velocity equation: V_term = square root(mg/b) If you know the weight mg and the terminal velocity, then you can solve for b. Please help me to derive the solution by helping me to understand better. I understand point 1. But I don't understand clearly point 2?
A parachutist wants to design a parachute, such that a person weighing 150 lbs(667N) descends at a rate of 5.00 mph(2.23 m/s). To calculate the drag coefficient in kg/m, is the way to conceptualize the solution: 1. At terminal velocity the drag force equals the force of gravity. Since the net forces are zero, there is no acceleration and the velocity is constant. 2. The drag constant b is not 1. It comes from the terminal velocity equation: V_term = square root(mg/b) If you know the weight mg and the terminal velocity, then you can solve for b. Please help me to derive the solution by helping me to understand better. I understand point 1. But I don't understand clearly point 2?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
A parachutist wants to design a parachute, such that a person weighing 150 lbs(667N) descends at a rate of 5.00 mph(2.23 m/s). To calculate the drag coefficient in kg/m, is the way to conceptualize the solution:
1. At terminal velocity the drag force equals the force of gravity. Since the net forces are zero, there is no acceleration and the velocity is constant.
2. The drag constant b is not 1. It comes from the terminal velocity equation:
V_term = square root(mg/b)
If you know the weight mg and the terminal velocity, then you can solve for b.
Please help me to derive the solution by helping me to understand better. I understand point 1. But I don't understand clearly point 2?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON