a note with a face value of 9000 was discounted at 5% , if the discount was $185, find the lenght if the loan in days. answer is 150 days

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

a note with a face value of 9000 was discounted at 5% , if the discount was $185, find the lenght if the loan in days.

answer is 150 days

 

**FORMULAS — CH. 4-1332**

### Simple Interest
1. \( I = Prt \)
2. \( A = P + Prt \)
3. \( A = P(1 + rt) \)

### Compound Interest

- Formula for interest paid n times per year:
  4. \( A = P \left(1 + \frac{\text{APR}}{n}\right)^{nt} \)

- Continuous compounding:
  5. \( A = Pe^{(\text{APR} \times Y)} \) or \( A = Pe^{rt} \)

### Annual Percentage Yield
6. \( \text{APY} = \left(\frac{\text{year end balance - starting balance}}{\text{Starting balance}}\right) \times 100\%\)

7. \( \text{APY} = \left(1 + \frac{\text{APR}}{n}\right)^n - 1 \)

   \( = (1 + \text{APR} - n)^{1 - 1} \)

   *[Calculator]*

### Savings Plans

8. \( A = \text{PMT} \times \left(\frac{\left(1+ \frac{\text{APR}}{n}\right)^{nY} - 1}{\frac{\text{APR}}{n}}\right) \)

   \[ \text{PMT} ((1 + \text{APR} \div n)^{nY} - 1) + (\text{APR} \div n) \]

   *[Calculator]*

9. \( PMT = A \times \left(\frac{\frac{\text{APR}}{n}}{\left(1 + \frac{\text{APR}}{n}\right)^{nY} - 1}\right) \)

   \[ A (\text{APR} \div n) - ((1 + \text{APR} \div n)^{nY} - 1) \]

   *[Calculator]*

### Loan Payment Formula

10. \( PMT = P \times \left(\frac{\frac{\text{APR}}{n}}{1 - \left(1 + \frac{\text{APR}}{n}\right)^{-nY}}\right) \)

    \[ P (\text{APR}
Transcribed Image Text:**FORMULAS — CH. 4-1332** ### Simple Interest 1. \( I = Prt \) 2. \( A = P + Prt \) 3. \( A = P(1 + rt) \) ### Compound Interest - Formula for interest paid n times per year: 4. \( A = P \left(1 + \frac{\text{APR}}{n}\right)^{nt} \) - Continuous compounding: 5. \( A = Pe^{(\text{APR} \times Y)} \) or \( A = Pe^{rt} \) ### Annual Percentage Yield 6. \( \text{APY} = \left(\frac{\text{year end balance - starting balance}}{\text{Starting balance}}\right) \times 100\%\) 7. \( \text{APY} = \left(1 + \frac{\text{APR}}{n}\right)^n - 1 \) \( = (1 + \text{APR} - n)^{1 - 1} \) *[Calculator]* ### Savings Plans 8. \( A = \text{PMT} \times \left(\frac{\left(1+ \frac{\text{APR}}{n}\right)^{nY} - 1}{\frac{\text{APR}}{n}}\right) \) \[ \text{PMT} ((1 + \text{APR} \div n)^{nY} - 1) + (\text{APR} \div n) \] *[Calculator]* 9. \( PMT = A \times \left(\frac{\frac{\text{APR}}{n}}{\left(1 + \frac{\text{APR}}{n}\right)^{nY} - 1}\right) \) \[ A (\text{APR} \div n) - ((1 + \text{APR} \div n)^{nY} - 1) \] *[Calculator]* ### Loan Payment Formula 10. \( PMT = P \times \left(\frac{\frac{\text{APR}}{n}}{1 - \left(1 + \frac{\text{APR}}{n}\right)^{-nY}}\right) \) \[ P (\text{APR}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,