a note with a face value of 9000 was discounted at 5% , if the discount was $185, find the lenght if the loan in days. answer is 150 days
a note with a face value of 9000 was discounted at 5% , if the discount was $185, find the lenght if the loan in days. answer is 150 days
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
a note with a face value of 9000 was discounted at 5% , if the discount was $185, find the lenght if the loan in days.
answer is 150 days
![**FORMULAS — CH. 4-1332**
### Simple Interest
1. \( I = Prt \)
2. \( A = P + Prt \)
3. \( A = P(1 + rt) \)
### Compound Interest
- Formula for interest paid n times per year:
4. \( A = P \left(1 + \frac{\text{APR}}{n}\right)^{nt} \)
- Continuous compounding:
5. \( A = Pe^{(\text{APR} \times Y)} \) or \( A = Pe^{rt} \)
### Annual Percentage Yield
6. \( \text{APY} = \left(\frac{\text{year end balance - starting balance}}{\text{Starting balance}}\right) \times 100\%\)
7. \( \text{APY} = \left(1 + \frac{\text{APR}}{n}\right)^n - 1 \)
\( = (1 + \text{APR} - n)^{1 - 1} \)
*[Calculator]*
### Savings Plans
8. \( A = \text{PMT} \times \left(\frac{\left(1+ \frac{\text{APR}}{n}\right)^{nY} - 1}{\frac{\text{APR}}{n}}\right) \)
\[ \text{PMT} ((1 + \text{APR} \div n)^{nY} - 1) + (\text{APR} \div n) \]
*[Calculator]*
9. \( PMT = A \times \left(\frac{\frac{\text{APR}}{n}}{\left(1 + \frac{\text{APR}}{n}\right)^{nY} - 1}\right) \)
\[ A (\text{APR} \div n) - ((1 + \text{APR} \div n)^{nY} - 1) \]
*[Calculator]*
### Loan Payment Formula
10. \( PMT = P \times \left(\frac{\frac{\text{APR}}{n}}{1 - \left(1 + \frac{\text{APR}}{n}\right)^{-nY}}\right) \)
\[ P (\text{APR}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdc702ff9-d3e6-4e4b-abbc-7bc2699ae04d%2F28e37cb2-2aa6-4a9c-a043-90caf1e3d8ec%2F6klr0w8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**FORMULAS — CH. 4-1332**
### Simple Interest
1. \( I = Prt \)
2. \( A = P + Prt \)
3. \( A = P(1 + rt) \)
### Compound Interest
- Formula for interest paid n times per year:
4. \( A = P \left(1 + \frac{\text{APR}}{n}\right)^{nt} \)
- Continuous compounding:
5. \( A = Pe^{(\text{APR} \times Y)} \) or \( A = Pe^{rt} \)
### Annual Percentage Yield
6. \( \text{APY} = \left(\frac{\text{year end balance - starting balance}}{\text{Starting balance}}\right) \times 100\%\)
7. \( \text{APY} = \left(1 + \frac{\text{APR}}{n}\right)^n - 1 \)
\( = (1 + \text{APR} - n)^{1 - 1} \)
*[Calculator]*
### Savings Plans
8. \( A = \text{PMT} \times \left(\frac{\left(1+ \frac{\text{APR}}{n}\right)^{nY} - 1}{\frac{\text{APR}}{n}}\right) \)
\[ \text{PMT} ((1 + \text{APR} \div n)^{nY} - 1) + (\text{APR} \div n) \]
*[Calculator]*
9. \( PMT = A \times \left(\frac{\frac{\text{APR}}{n}}{\left(1 + \frac{\text{APR}}{n}\right)^{nY} - 1}\right) \)
\[ A (\text{APR} \div n) - ((1 + \text{APR} \div n)^{nY} - 1) \]
*[Calculator]*
### Loan Payment Formula
10. \( PMT = P \times \left(\frac{\frac{\text{APR}}{n}}{1 - \left(1 + \frac{\text{APR}}{n}\right)^{-nY}}\right) \)
\[ P (\text{APR}
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)