A new drug for pain relief is being tested within a given palliative care population. The new drug is being compared to an already approved pain relief drug that is commonly used in providing palliative care to patients who experience chronic severe pain. Assume the patients are asked to rate the pain on a scale from 1 to 10, and the data presented below was obtained from a small study designed to compare the effectiveness of the two drugs. Set up and interpret the results of a Mann-Whitney U test with an alpha of .05.                         Pain Rating as Reported by Patients Old Drug         1          3          3          4          6            New Drug       1          2          3          3          7 Old Drug New Drug Total Sample (Ordered Smallest to Largest) Ranks Old Drug New Drug Old Drug New Drug                                                                                                     A) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 10.5 is greater than the critical U value of 2. B) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 14.5 is greater than the critical U value of 2. C) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 10.5 is greater than the critical U value of 2. D) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 14.5 is greater than the critical U value of 2.   A new chemotherapy drug is released to treat leukemia and researchers suspect that the drug may have fewer side effects than the most commonly used drug to treat leukemia. The two drugs have equivalent efficacy. In order to determine if a larger study should be conducted to look into the prevalence of side effects for the two drugs, set up a Mann-Whitney U test at the alpha equals .05 level and interpret its results.                         Number of Reported Side-Effects Old Drug         0          1          3          3          5 New Drug       0          0          1          2          4 Old Drug New Drug Total Sample (Ordered Smallest to Largest) Ranks Old Drug New Drug Old Drug New Drug                                                                                                               A) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 16.5 is greater than the critical U value of 2. B) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 8.5 is greater than the critical U value of 2. C) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 16.5 is greater than the critical U value of 2. D) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 8.5 is greater than the critical U value of 2.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question

Multiple Choice

  1. A new drug for pain relief is being tested within a given palliative care population. The new drug is being compared to an already approved pain relief drug that is commonly used in providing palliative care to patients who experience chronic severe pain. Assume the patients are asked to rate the pain on a scale from 1 to 10, and the data presented below was obtained from a small study designed to compare the effectiveness of the two drugs. Set up and interpret the results of a Mann-Whitney U test with an alpha of .05.

                        Pain Rating as Reported by Patients

Old Drug         1          3          3          4          6           

New Drug       1          2          3          3          7

Old Drug

New Drug

Total Sample

(Ordered Smallest to Largest)

Ranks

Old Drug

New Drug

Old Drug

New Drug

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. A) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 10.5 is greater than the critical U value of 2.
  2. B) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 14.5 is greater than the critical U value of 2.
  3. C) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 10.5 is greater than the critical U value of 2.
  4. D) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 14.5 is greater than the critical U value of 2.

 

  1. A new chemotherapy drug is released to treat leukemia and researchers suspect that the drug may have fewer side effects than the most commonly used drug to treat leukemia. The two drugs have equivalent efficacy. In order to determine if a larger study should be conducted to look into the prevalence of side effects for the two drugs, set up a Mann-Whitney U test at the alpha equals .05 level and interpret its results.

                        Number of Reported Side-Effects

Old Drug         0          1          3          3          5

New Drug       0          0          1          2          4

Old Drug

New Drug

Total Sample

(Ordered Smallest to Largest)

Ranks

Old Drug

New Drug

Old Drug

New Drug

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. A) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 16.5 is greater than the critical U value of 2.
  2. B) We fail to reject H0, which states the two populations are equal at the alpha equals .05 level because the calculated U value of 8.5 is greater than the critical U value of 2.
  3. C) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 16.5 is greater than the critical U value of 2.
  4. D) We reject H0 in favor of H1, which states the two populations are not equal at the alpha equals .05 level because the calculated U value of 8.5 is greater than the critical U value of 2.

 

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 9 images

Blurred answer
Knowledge Booster
Hypothesis Tests and Confidence Intervals for Proportions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman