A microwave source produces pulses of 21.0 GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius R = 8.50 cm is used to fo beam of radiation, as shown in the figure below. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? cm (b) What is the total energy contained in each pulse? μJ (c) Compute the average energy density inside each pulse.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A microwave source produces pulses of 21.0 GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius R = 8.50 cm is used to focus the microwaves into a parallel
beam of radiation, as shown in the figure below. The average power during each pulse is 25.0 kW.
(a) What is the wavelength of these microwaves?
cm
(b) What is the total energy contained in each pulse?
μJ
(c) Compute the average energy density inside each pulse.
mJ/m³
3
(d) Determine the amplitude of the electric field and magnetic field in these microwaves.
Emax
kv/m
μT
B.
max
(e) Compute the force exerted on the surface during the 1.00 ns duration of each pulse. Assume this pulsed beam strikes an absorbing surface.
UN
Transcribed Image Text:A microwave source produces pulses of 21.0 GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius R = 8.50 cm is used to focus the microwaves into a parallel beam of radiation, as shown in the figure below. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? cm (b) What is the total energy contained in each pulse? μJ (c) Compute the average energy density inside each pulse. mJ/m³ 3 (d) Determine the amplitude of the electric field and magnetic field in these microwaves. Emax kv/m μT B. max (e) Compute the force exerted on the surface during the 1.00 ns duration of each pulse. Assume this pulsed beam strikes an absorbing surface. UN
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Maxwell Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON