A mass m=720.0 g and spring with spring constant k oscillates with angular frequency ω=9.80 rad/s and amplitude xm=15.0 cm as in Figure 5. It is maximally stretched at time t=0 (i.e. x(0)=+xm and Φ=0). A. The position as a function of time is x(t) = xm cos(ωt +Φ). Write an expression for v(t). B. Calculate the maximum velocity (i.e the amplitude of the velocity). At what position(s) does themass reach its maximum velocity? Explain. C. Calculate the total mechanical energy E at time t=3 s.

icon
Related questions
Question

A mass m=720.0 g and spring with spring constant k oscillates with angular frequency ω=9.80 rad/s and amplitude xm=15.0 cm as in Figure 5. It is maximally stretched at time t=0 (i.e. x(0)=+xm and Φ=0).

A. The position as a function of time is x(t) = xm cos(ωt +Φ). Write an expression for v(t).

B. Calculate the maximum velocity (i.e the amplitude of the velocity). At what position(s) does themass reach its maximum velocity? Explain.

C. Calculate the total mechanical energy E at time t=3 s.

D. At t=5s the total mechanical energy E____E at t=3 s.

a) > b) = c) <

E. Calculate the length L of a Simple Pendulum with the same period T of this mass.

m
-Xm
x = 0
+Xm
Figure 5:
Transcribed Image Text:m -Xm x = 0 +Xm Figure 5:
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions