Binomial Probability Sums b(x;n,p) Binomial Probability Sums b(z;n,p) P P n 76 " 0.10 17 0 0.1668 0.20 0.0225 0.25 0.30 0.0075 0.0023 0.0002 0.40 0.50 0.0000 0.60 0.70 0.80 0.90 T 0.10 19 0 0.1351 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.0144 0.0042 0.0011 0.0001 1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000 1 0.4818 0.1182 2 0.7618 0.3096 3 0.9174 0.5489 4 0.9779 5 0.9953 6 0.3530 0.7582 0.5739 0.8943 0.7653 0.9992 0.9623 0.8929 7 0.9999 0.9891 0.9598 9 10 11 12 13 14 15 16 17 0.0501 0.0193 0.0021 0.0001 0.0000 0.1637 0.0774 0.0123 0.0012 0.0001 0.2019 0.0464 0.0064 0.0005 0.0000 0.3887 0.1260 0.0245 0.0025 0.0001 0.5968 0.2639 0.0717 0.0106 0.7752 0.4478 0.1662 0.0348 0.8954 0.6405 0.3145 0.0919 0.0127 8 1.0000 0.9974 0.9876 0.9597 0.8011 0.5000 0.1989 0.0403 0.9969 0.9873 0.9081 0.6855 0.3595 0.9995 0.1046 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 0.2248 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221 1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382 1.0000 0.9999 0.9979 0.9807 0.8818 0.5182 1.0000 0.9998 0.9977 0.9775 0.8332 1.0000 1.0000 1.0000 2 0.7054 0.2369 0.1113 0.0462 3 0.8850 0.0055 0.0004 0.0000 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001 4 0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000 5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001 0.0007 0.0000 0.0032 0.0001 0.0005 6 7 0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006 0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000 8 0.0026 0.0000 9 0.0109 0.0001 10 11 0.0377 0.0008 12 13 14 15 16 17 1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003 0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016 0.9997 0.9115 0.0000 0.9977 0.9895 0.6762 0.3325 0.0839 0.0067 1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086 1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352 0.9999 0.9978 0.9770 0.8668 0.5449 0.1150 1.0000 0.9996 0.9945 0.9538 0.7631 0.2946 1.0000 0.9992 0.9896 0.9171 0.5797 18 1.0000 19 18 0 0.1501 2 3 0.0180 0.0056 1 0.4503 0.0991 0.0395 0.7338 0.2713 0.9018 0.5010 4 0.9718 0.7164 5 0.9936 0.8671 0.0016 0.0001 0.0000 0.0142 0.0013 0.0001 0.1353 0.0600 0.0082 0.0007 0.0000 0.3057 0.0038 0.0328 0.0002 0.1646 0.5187 0.3327 0.0942 0.0154 0.0013 0.0000 0.7175 20 0 0.1216 0.0115 0.0032 0.0008 0.0000 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000 0.9999 0.9989 0.9856 0.8649 1.0000 1.0000 1.0000 1.0000 0.5344 0.2088 0.0481 0.0058 0.0003 6 9 10 11 12 13 14 15 1.0000 0.9997 0.9942 0.9519 1.0000 0.9987 0.9846 0.9962 0.9998 1.0000 0.9993 16 17 18 " 0.10 0.20 0.25 0.30 0.40 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000 7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002 8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 0.0002 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012 0.7912 0.4656 0.1329 0.0064 0.9058 0.6673 0.2836 0.0282 0.8354 0.9672 0.0982 0.4990 0.9918 0.9400 0.7287 0.2662 0.9999 0.9987 0.9858 0.9009 0.5497 1.0000 0.9999 0.9984 0.9820 0.8499 1.0000 1.0000 1.0000 1.0000 0.60 0.70 0.80 0.90 0.50 C3 &' P 1 2 4 5 6 8 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002 3 0.8670 0.2252 0.4114 0.1071 0.0160 0.0013 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003 0.9887 0.8042 0.6172 0.4164 0.9976 0.9133 0.7858 0.6080 7 0.9996 0.9679 0.8982 0.7723 0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001 0.4159 0.1316 0.0210 0.0013 0.0000 9 1.0000 10 11 12 13 14 15 16 17 18 19 20 1.0000 1.0000 1.0000 n " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P 0.0000 0.1256 0.0207 0.0016 0.0000 0.2500 0.0577 0.0065 0.0003 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330 0.9998 0.9964 0.9645 0.7939 0.3231 1.0000 0.9995 0.9924 0.9308 0.6083 1.0000 0.9992 0.9885 0.8784 A marketing expert for a pasta-making company believes that 30% of pasta lovers prefer lasagna. If 7 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Click here to view the binomial probability sums table for n=17 and n=18. Click here to view the binomial probability sums table for n=19 and n=20. Let a success be a pasta lover that chooses lasagna over other pastas. Identify the null and alternative hypotheses. ○ A. Ho: p<0.3 H₁: p=0.3 ○ D. Ho: p=0.3 H₁: p<0.3 The test statistic is a binomial variable X with p = ☐ and n = [ (Type integers or decimals. Do not round.) Find the P-value. (Round to three decimal places as needed.) What is the appropriate conclusion for this test? OB. Ho: p > 0.3 H₁: p=0.3 O E. Ho: p# 0.3 H₁: p=0.3 ○ A. Do not reject Ho and conclude that there is not sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ B. Reject Ho and conclude that there is sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ C. Reject Ho and conclude that there is not sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ D. Do not reject Ho and conclude that there is sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ C. Ho p=0.3 H₁ p 0.3 O F. Ho: p = 0.3 H₁: p>0.3

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Binomial Probability Sums
b(x;n,p)
Binomial Probability Sums b(z;n,p)
P
P
n
76 "
0.10
17
0
0.1668
0.20
0.0225
0.25 0.30
0.0075 0.0023 0.0002
0.40
0.50
0.0000
0.60
0.70
0.80
0.90
T 0.10
19 0 0.1351
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.0144 0.0042 0.0011 0.0001
1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000
1
0.4818 0.1182
2
0.7618 0.3096
3
0.9174 0.5489
4
0.9779
5
0.9953
6
0.3530
0.7582 0.5739
0.8943 0.7653
0.9992 0.9623 0.8929
7 0.9999 0.9891 0.9598
9
10
11
12
13
14
15
16
17
0.0501 0.0193 0.0021 0.0001 0.0000
0.1637 0.0774 0.0123 0.0012 0.0001
0.2019 0.0464 0.0064 0.0005 0.0000
0.3887 0.1260 0.0245
0.0025 0.0001
0.5968 0.2639 0.0717
0.0106
0.7752 0.4478 0.1662 0.0348
0.8954 0.6405 0.3145 0.0919 0.0127
8 1.0000 0.9974 0.9876 0.9597 0.8011 0.5000 0.1989 0.0403
0.9969 0.9873 0.9081 0.6855 0.3595
0.9995
0.1046
0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 0.2248
1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047
1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221
1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826
0.9999 0.9988 0.9877 0.9226 0.6904 0.2382
1.0000 0.9999 0.9979 0.9807 0.8818 0.5182
1.0000 0.9998 0.9977 0.9775 0.8332
1.0000 1.0000 1.0000
2
0.7054 0.2369 0.1113 0.0462
3 0.8850
0.0055 0.0004 0.0000
0.4551 0.2631 0.1332
0.0230 0.0022 0.0001
4
0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000
5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001
0.0007 0.0000
0.0032 0.0001
0.0005
6
7
0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006
0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000
8
0.0026 0.0000
9
0.0109
0.0001
10
11
0.0377 0.0008
12
13
14
15
16
17
1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003
0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016
0.9997
0.9115
0.0000
0.9977 0.9895
0.6762 0.3325 0.0839 0.0067
1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003
0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017
1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086
1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352
0.9999 0.9978 0.9770 0.8668 0.5449 0.1150
1.0000 0.9996 0.9945 0.9538 0.7631 0.2946
1.0000 0.9992 0.9896 0.9171 0.5797
18
1.0000
19
18 0 0.1501
2
3
0.0180 0.0056
1 0.4503
0.0991 0.0395
0.7338 0.2713
0.9018 0.5010
4
0.9718 0.7164
5
0.9936 0.8671
0.0016 0.0001 0.0000
0.0142 0.0013 0.0001
0.1353 0.0600 0.0082 0.0007 0.0000
0.3057
0.0038
0.0328
0.0002
0.1646
0.5187 0.3327 0.0942 0.0154 0.0013 0.0000
0.7175
20 0 0.1216 0.0115 0.0032 0.0008 0.0000
0.3917 0.0692 0.0243 0.0076 0.0005 0.0000
0.9999 0.9989 0.9856 0.8649
1.0000 1.0000 1.0000 1.0000
0.5344 0.2088 0.0481 0.0058 0.0003
6
9
10
11
12
13
14
15
1.0000 0.9997 0.9942 0.9519
1.0000 0.9987
0.9846
0.9962
0.9998
1.0000 0.9993
16
17
18
"
0.10
0.20
0.25
0.30
0.40
0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000
7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002
8 1.0000 0.9957
0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009
0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000
0.9998 0.9988 0.9939 0.9424 0.7597 0.4366
0.1407 0.0163 0.0002
1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012
0.7912 0.4656 0.1329 0.0064
0.9058 0.6673 0.2836 0.0282
0.8354
0.9672
0.0982
0.4990
0.9918 0.9400 0.7287 0.2662
0.9999 0.9987 0.9858 0.9009 0.5497
1.0000 0.9999 0.9984 0.9820 0.8499
1.0000 1.0000 1.0000 1.0000
0.60 0.70 0.80 0.90
0.50
C3 &'
P
1
2
4
5
6
8
0.6769 0.2061 0.0913 0.0355 0.0036 0.0002
3 0.8670
0.2252
0.4114
0.1071 0.0160 0.0013
0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003
0.9887 0.8042 0.6172 0.4164
0.9976 0.9133 0.7858 0.6080
7 0.9996 0.9679 0.8982 0.7723
0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001
0.4159 0.1316 0.0210 0.0013 0.0000
9
1.0000
10
11
12
13
14
15
16
17
18
19
20
1.0000 1.0000 1.0000
n
" 0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
P
0.0000
0.1256 0.0207 0.0016 0.0000
0.2500 0.0577 0.0065 0.0003
0.9974 0.9861 0.9520
0.7553 0.4119 0.1275 0.0171 0.0006
0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000
0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001
1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004
1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024
1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113
0.9997 0.9941 0.9490 0.7625 0.3704 0.0432
1.0000 0.9987 0.9840 0.8929 0.5886 0.1330
0.9998 0.9964 0.9645 0.7939 0.3231
1.0000 0.9995 0.9924 0.9308 0.6083
1.0000 0.9992 0.9885 0.8784
Transcribed Image Text:Binomial Probability Sums b(x;n,p) Binomial Probability Sums b(z;n,p) P P n 76 " 0.10 17 0 0.1668 0.20 0.0225 0.25 0.30 0.0075 0.0023 0.0002 0.40 0.50 0.0000 0.60 0.70 0.80 0.90 T 0.10 19 0 0.1351 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.0144 0.0042 0.0011 0.0001 1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000 1 0.4818 0.1182 2 0.7618 0.3096 3 0.9174 0.5489 4 0.9779 5 0.9953 6 0.3530 0.7582 0.5739 0.8943 0.7653 0.9992 0.9623 0.8929 7 0.9999 0.9891 0.9598 9 10 11 12 13 14 15 16 17 0.0501 0.0193 0.0021 0.0001 0.0000 0.1637 0.0774 0.0123 0.0012 0.0001 0.2019 0.0464 0.0064 0.0005 0.0000 0.3887 0.1260 0.0245 0.0025 0.0001 0.5968 0.2639 0.0717 0.0106 0.7752 0.4478 0.1662 0.0348 0.8954 0.6405 0.3145 0.0919 0.0127 8 1.0000 0.9974 0.9876 0.9597 0.8011 0.5000 0.1989 0.0403 0.9969 0.9873 0.9081 0.6855 0.3595 0.9995 0.1046 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 0.2248 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221 1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382 1.0000 0.9999 0.9979 0.9807 0.8818 0.5182 1.0000 0.9998 0.9977 0.9775 0.8332 1.0000 1.0000 1.0000 2 0.7054 0.2369 0.1113 0.0462 3 0.8850 0.0055 0.0004 0.0000 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001 4 0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000 5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001 0.0007 0.0000 0.0032 0.0001 0.0005 6 7 0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006 0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000 8 0.0026 0.0000 9 0.0109 0.0001 10 11 0.0377 0.0008 12 13 14 15 16 17 1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003 0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016 0.9997 0.9115 0.0000 0.9977 0.9895 0.6762 0.3325 0.0839 0.0067 1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086 1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352 0.9999 0.9978 0.9770 0.8668 0.5449 0.1150 1.0000 0.9996 0.9945 0.9538 0.7631 0.2946 1.0000 0.9992 0.9896 0.9171 0.5797 18 1.0000 19 18 0 0.1501 2 3 0.0180 0.0056 1 0.4503 0.0991 0.0395 0.7338 0.2713 0.9018 0.5010 4 0.9718 0.7164 5 0.9936 0.8671 0.0016 0.0001 0.0000 0.0142 0.0013 0.0001 0.1353 0.0600 0.0082 0.0007 0.0000 0.3057 0.0038 0.0328 0.0002 0.1646 0.5187 0.3327 0.0942 0.0154 0.0013 0.0000 0.7175 20 0 0.1216 0.0115 0.0032 0.0008 0.0000 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000 0.9999 0.9989 0.9856 0.8649 1.0000 1.0000 1.0000 1.0000 0.5344 0.2088 0.0481 0.0058 0.0003 6 9 10 11 12 13 14 15 1.0000 0.9997 0.9942 0.9519 1.0000 0.9987 0.9846 0.9962 0.9998 1.0000 0.9993 16 17 18 " 0.10 0.20 0.25 0.30 0.40 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000 7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002 8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 0.0002 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012 0.7912 0.4656 0.1329 0.0064 0.9058 0.6673 0.2836 0.0282 0.8354 0.9672 0.0982 0.4990 0.9918 0.9400 0.7287 0.2662 0.9999 0.9987 0.9858 0.9009 0.5497 1.0000 0.9999 0.9984 0.9820 0.8499 1.0000 1.0000 1.0000 1.0000 0.60 0.70 0.80 0.90 0.50 C3 &' P 1 2 4 5 6 8 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002 3 0.8670 0.2252 0.4114 0.1071 0.0160 0.0013 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003 0.9887 0.8042 0.6172 0.4164 0.9976 0.9133 0.7858 0.6080 7 0.9996 0.9679 0.8982 0.7723 0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001 0.4159 0.1316 0.0210 0.0013 0.0000 9 1.0000 10 11 12 13 14 15 16 17 18 19 20 1.0000 1.0000 1.0000 n " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P 0.0000 0.1256 0.0207 0.0016 0.0000 0.2500 0.0577 0.0065 0.0003 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330 0.9998 0.9964 0.9645 0.7939 0.3231 1.0000 0.9995 0.9924 0.9308 0.6083 1.0000 0.9992 0.9885 0.8784
A marketing expert for a pasta-making company believes that 30% of pasta lovers prefer lasagna. If 7 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance.
Click here to view the binomial probability sums table for n=17 and n=18.
Click here to view the binomial probability sums table for n=19 and n=20.
Let a success be a pasta lover that chooses lasagna over other pastas. Identify the null and alternative hypotheses.
○ A. Ho: p<0.3
H₁: p=0.3
○ D. Ho: p=0.3
H₁: p<0.3
The test statistic is a binomial variable X with p = ☐ and n = [
(Type integers or decimals. Do not round.)
Find the P-value.
(Round to three decimal places as needed.)
What is the appropriate conclusion for this test?
OB. Ho: p > 0.3
H₁: p=0.3
O E. Ho: p# 0.3
H₁: p=0.3
○ A. Do not reject Ho and conclude that there is not sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%.
○ B. Reject Ho and conclude that there is sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%.
○ C. Reject Ho and conclude that there is not sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%.
○ D. Do not reject Ho and conclude that there is sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%.
○ C. Ho p=0.3
H₁ p 0.3
O F. Ho: p = 0.3
H₁: p>0.3
Transcribed Image Text:A marketing expert for a pasta-making company believes that 30% of pasta lovers prefer lasagna. If 7 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Click here to view the binomial probability sums table for n=17 and n=18. Click here to view the binomial probability sums table for n=19 and n=20. Let a success be a pasta lover that chooses lasagna over other pastas. Identify the null and alternative hypotheses. ○ A. Ho: p<0.3 H₁: p=0.3 ○ D. Ho: p=0.3 H₁: p<0.3 The test statistic is a binomial variable X with p = ☐ and n = [ (Type integers or decimals. Do not round.) Find the P-value. (Round to three decimal places as needed.) What is the appropriate conclusion for this test? OB. Ho: p > 0.3 H₁: p=0.3 O E. Ho: p# 0.3 H₁: p=0.3 ○ A. Do not reject Ho and conclude that there is not sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ B. Reject Ho and conclude that there is sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ C. Reject Ho and conclude that there is not sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ D. Do not reject Ho and conclude that there is sufficient evidence that the percentage of pasta lovers that prefer lasagna is not 30%. ○ C. Ho p=0.3 H₁ p 0.3 O F. Ho: p = 0.3 H₁: p>0.3
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman