A manufacturing company makes two products (denoted as X and Y) through two ma- chines (denoted as A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and another 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and another 30 minutes processing time on machine B. At the beginning of this month, there are 49 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours, and on machine B is forecast to be 37 hours. In the current month, the demand for Xis forecast to be 85 units, and the demand for Yis forecast to be 95 units. Under the condition that the demand is met by the end of this month, the company's goal is to maximise the combined sum of the units of X and the units of Y in stock at the end of this month.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

part 3 4

Question 5
A manufacturing company makes two products (denoted as X and Y) through two ma-
chines (denoted as A and B).
Each unit of X that is produced requires 50 minutes processing time on machine A
and another 30 minutes processing time on machine B.
Each unit of Y that is produced requires 24 minutes processing time on machine A
and another 30 minutes processing time on machine B.
At the beginning of this month, there are 49 units of X and 90 units of Y in stock.
Available processing time on machine A is forecast to be 40 hours, and on machine B is
forecast to be 37 hours.
In the current month, the demand for Xis forecast to be 85 units, and the demand for
Yis forecast to be 95 units. Under the condition that the demand is met by the end of this
month, the company's goal is to maximise the combined sum of the units of X and the
units of Y in stock at the end of this month.
(1) Formulate the maximisation problem of deciding how many units of each product
to make in the current month as a linear programming problem. You need to specify
the target function to be maximised, and all constraints to be imposed on the target.
(2) Present a hand-drawing graph to illustrate this maximisation problem. A ruler needs
to be used when drawing straight lines, and the coordinates on the vertical axis and
horizontal axis need to be marked. Note that you can take a photo of your graph and
insert it into your Word document (or Latex document).
(3) Find out all possible points, which are most likely to be the maximum point (that is,
the point which maximises the target function).
(4) Of all the points identified in (3), decide which point is the solution to this maximisa-
tion problem.
Transcribed Image Text:Question 5 A manufacturing company makes two products (denoted as X and Y) through two ma- chines (denoted as A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and another 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and another 30 minutes processing time on machine B. At the beginning of this month, there are 49 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours, and on machine B is forecast to be 37 hours. In the current month, the demand for Xis forecast to be 85 units, and the demand for Yis forecast to be 95 units. Under the condition that the demand is met by the end of this month, the company's goal is to maximise the combined sum of the units of X and the units of Y in stock at the end of this month. (1) Formulate the maximisation problem of deciding how many units of each product to make in the current month as a linear programming problem. You need to specify the target function to be maximised, and all constraints to be imposed on the target. (2) Present a hand-drawing graph to illustrate this maximisation problem. A ruler needs to be used when drawing straight lines, and the coordinates on the vertical axis and horizontal axis need to be marked. Note that you can take a photo of your graph and insert it into your Word document (or Latex document). (3) Find out all possible points, which are most likely to be the maximum point (that is, the point which maximises the target function). (4) Of all the points identified in (3), decide which point is the solution to this maximisa- tion problem.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman