A long, slender structural aluminum [E = 69 GPa] flanged shape is used as a L = 9.2-m-long column. The column is supported in the x direction at base A and pinned at ends A and C against translation in the y and z directions. Lateral support is provided to the column so that deflection in the x-z plane is restrained at mid-height B; however, the column is free to deflect in the x-y plane at B. Assume that b; = 102 mm, d = 122 mm, t; = 8 mm, and t, = 6 mm. Determine the maximum compressive load P the column can support if a factor of safety of 2.9 is required. In your analysis, consider the possibility that buckling could occur about either the strong axis (i.e., the z axis) or the weak axis (i.e., the y axis) of the aluminum column. by C L 2 d Lateral B bracing L 2

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
A long, slender structural aluminum [E = 69 GPa] flanged shape is used as a l = 9.2-m-long column. The column is supported in
the x direction at base A and pinned at ends A and C against translation in the y and z directions. Lateral support is provided to
the column so that deflection in the x-z plane is restrained at mid-height B; however, the column is free to deflect in the x-y
plane at B. Assume that b; = 102 mm, d = 122 mm, t; = 8 mm, and t, = 6 mm. Determine the maximum compressive load P the
column can support if a factor of safety of 2.9 is required. In your analysis, consider the possibility that buckling could occur
about either the strong axis (i.e., the z axis) or the weak axis (i.e., the y axis) of the aluminum column.
by
C
L
2
d
Lateral
B
bracing
L
2
Transcribed Image Text:A long, slender structural aluminum [E = 69 GPa] flanged shape is used as a l = 9.2-m-long column. The column is supported in the x direction at base A and pinned at ends A and C against translation in the y and z directions. Lateral support is provided to the column so that deflection in the x-z plane is restrained at mid-height B; however, the column is free to deflect in the x-y plane at B. Assume that b; = 102 mm, d = 122 mm, t; = 8 mm, and t, = 6 mm. Determine the maximum compressive load P the column can support if a factor of safety of 2.9 is required. In your analysis, consider the possibility that buckling could occur about either the strong axis (i.e., the z axis) or the weak axis (i.e., the y axis) of the aluminum column. by C L 2 d Lateral B bracing L 2
Determine the critical buckling load for buckling about the z axis.
Answer: Perz= i
! kN.
eTextbook and Media
Save for Later Last saved 5 hours ago.
Saved work will be auto-submitted on the due date.
Part 3
Incorrect
The allowable load is the maximum compressive load that the col
given factor of safety.
Determine the allowable compressive load for buckling about the z axis.
Answer: Pallowz=
! kN.
i
Transcribed Image Text:Determine the critical buckling load for buckling about the z axis. Answer: Perz= i ! kN. eTextbook and Media Save for Later Last saved 5 hours ago. Saved work will be auto-submitted on the due date. Part 3 Incorrect The allowable load is the maximum compressive load that the col given factor of safety. Determine the allowable compressive load for buckling about the z axis. Answer: Pallowz= ! kN. i
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
System of units
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning