A long, copper strip, 500 mm wide, 3 mm thick, was found to have 450 MPa yield stress. The strip is required to be rolled in order to reduce its thickness. In the rolling process, the width remains practically unchanged while the rolls apply pressure in the thickness direction. An additional tension of 150 KN is applied in the longitudinal direction to assist the forming process. Ignoring the change in the width and any friction effects, determine what roll pressure would just cause deformation: according to the Von Mises yield criterion. according to the Tresca yield criterion. Material properties in the elastic range: E=75 GPa, v=0.4. (a) (b)
A long, copper strip, 500 mm wide, 3 mm thick, was found to have 450 MPa yield stress. The strip is required to be rolled in order to reduce its thickness. In the rolling process, the width remains practically unchanged while the rolls apply pressure in the thickness direction. An additional tension of 150 KN is applied in the longitudinal direction to assist the forming process. Ignoring the change in the width and any friction effects, determine what roll pressure would just cause deformation: according to the Von Mises yield criterion. according to the Tresca yield criterion. Material properties in the elastic range: E=75 GPa, v=0.4. (a) (b)
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:A long, copper strip, 500 mm wide, 3 mm thick, was found to have 450 MPa yield stress. The strip is required
to be rolled in order to reduce its thickness. In the rolling process, the width remains practically unchanged
while the rolls apply pressure in the thickness direction. An additional tension of 150 kN is applied in the
longitudinal direction to assist the forming process. Ignoring the change in the width and any friction effects,
determine what roll pressure would just cause deformation:
according to the Von Mises yield criterion.
according to the Tresca yield criterion.
Material properties in the elastic range: E=75 GPa, v=0.4.
(a)
(b)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY