A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 29.0° above the horizontal. The car accelerates uniformly to a speed of 2.35 m/s in 10.0 s and then continues at constant speed. (a) What power must the winch motor provide when the car is moving at constant speed? 11.0 X Your incorrect answer may have resulted from roundoff error. Make sure you keep extra significant figures in intermediate steps of your calculation. kW (b) What maximum power must the motor provide? kW (c) What total energy transfers out of the motor by work by the time the car moves off the end of the track, which is of length 1,250 m?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question
A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 29.0° above the
horizontal. The car accelerates uniformly to a speed of 2.35 m/s in 10.0 s and then continues at constant speed.
(a) What power must the winch motor provide when the car is moving at constant speed?
11.0 X
Your incorrect answer may have resulted from roundoff error. Make sure you keep extra significant figures in intermediate steps of your calculation. kW
(b) What maximum power must the motor provide?
kW
(c) What total energy transfers out of the motor by work by the time the car moves off the end of the track, which is of length 1,250 m?
Transcribed Image Text:A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 29.0° above the horizontal. The car accelerates uniformly to a speed of 2.35 m/s in 10.0 s and then continues at constant speed. (a) What power must the winch motor provide when the car is moving at constant speed? 11.0 X Your incorrect answer may have resulted from roundoff error. Make sure you keep extra significant figures in intermediate steps of your calculation. kW (b) What maximum power must the motor provide? kW (c) What total energy transfers out of the motor by work by the time the car moves off the end of the track, which is of length 1,250 m?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Mechanical Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON