A linear probing hash table of length 10 uses the hash function h(x) = x mod 10 + 1. mod is the reminder operator. For example the h(42) = 42 mod 10 + 1 = 2 + 1 = 3 so we insert 42 in the position 3 in the array. After inserting 6 integer keys into an initially empty hash table, the array of keys is 0100090000034901000003001c00000000000400000003010800050000000b0200000000050000000c02f907df06040000002e0118001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d0100001c000000fb0210000800000000009001000000810102022253797374656d00837a0200009096e230fc7f0000fc4971b29300000020000000040000002d01010004000000f0010000040000002d010100040000002d0101001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01010004000000f00100001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01010004000000f00100001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01010004000000f001000004000000020101001c000000fb02a4ff0000000000009001000000000440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010000040000002d010000040000002d010000050000000902000000020d000000320a570000000100040000000000e306fc0720003600050000000902000000021c000000fb021000070000000000bc020000000001020222417269616c000000000000000000000000000000000000000000000000000000040000002d010200040000002d010200030000000000 a- insert the key 35 b- insert the key 12 c- insert the key 10
-
A linear probing hash table of length 10 uses the hash function h(x) = x mod 10 + 1. mod is the reminder operator. For example the h(42) = 42 mod 10 + 1 = 2 + 1 = 3 so we insert 42 in the position 3 in the array.
After inserting 6 integer keys into an initially empty hash table, the array of keys is
0100090000034901000003001c00000000000400000003010800050000000b0200000000050000000c02f907df06040000002e0118001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d0100001c000000fb0210000800000000009001000000810102022253797374656d00837a0200009096e230fc7f0000fc4971b29300000020000000040000002d01010004000000f0010000040000002d010100040000002d0101001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01010004000000f00100001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01010004000000f00100001c000000fb0210000000000000009001000000810102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01010004000000f001000004000000020101001c000000fb02a4ff0000000000009001000000000440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010000040000002d010000040000002d010000050000000902000000020d000000320a570000000100040000000000e306fc0720003600050000000902000000021c000000fb021000070000000000bc020000000001020222417269616c000000000000000000000000000000000000000000000000000000040000002d010200040000002d010200030000000000
a- insert the key 35
b- insert the key 12
c- insert the key 10
Step by step
Solved in 3 steps