a) Let fn: [a, b] → R be a sequence of integrable functions, converging uniformly to f: [a, b] → R. Prove that f is integrable.
a) Let fn: [a, b] → R be a sequence of integrable functions, converging uniformly to f: [a, b] → R. Prove that f is integrable.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![a) Let fn: [a, b]
→ R be a sequence of integrable functions, converging uniformly to f: [a, b] → R.
Prove that f is integrable.
Hint: Show that for every partition P,
|L(f, P) – L(fn, P)| < ||f – fn|| (b – a),
and similarly for the upper sum. Combine this with Riemann's criterion.
b) Give an example of a sequence g„: [0, 1] → R of integrable functions converging pointwise to the
non-integrable function (Dirichlet's function)
g(x) = { O
1
:x irrational
:x rational](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F932dec80-8015-4c31-bdcf-744f85b7afd7%2F5fc08278-0b25-4ba4-b15b-5cc9c723943e%2F9uvt5aa_processed.png&w=3840&q=75)
Transcribed Image Text:a) Let fn: [a, b]
→ R be a sequence of integrable functions, converging uniformly to f: [a, b] → R.
Prove that f is integrable.
Hint: Show that for every partition P,
|L(f, P) – L(fn, P)| < ||f – fn|| (b – a),
and similarly for the upper sum. Combine this with Riemann's criterion.
b) Give an example of a sequence g„: [0, 1] → R of integrable functions converging pointwise to the
non-integrable function (Dirichlet's function)
g(x) = { O
1
:x irrational
:x rational
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)