A large cavity that has a very small hole and is maintained at a temperature T is a good approximation to an ideal radiator or blackbody. Radiation can pass into or out of the cavity only through the hole. The cavity is a perfect absorber, since any radiation incident on the hole becomes trapped inside the cavity. Such a cavity at 400°C has a hole with area 4.00 mm2. How long does it take for the cavity to radiate 100 J of energy through the hole?

icon
Related questions
Question

A large cavity that has a very small hole and is maintained at a temperature T is a good approximation to an ideal radiator or blackbody. Radiation can pass into or out of the cavity only through the hole. The cavity is a perfect absorber, since any radiation incident on the hole becomes trapped inside the cavity. Such a cavity at 400°C has a hole with area 4.00 mm2. How long does it take for the cavity to radiate 100 J of energy through the hole?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions