(A) Introduce slack, surplus, and artificial variables and form the modified problem. (B) Write the preliminary simplex tableau for the modified problem and find the initial simplex tableau. (C) Find the optimal solution of the modified problem by applying the simplex method to the initial simplex tableau. (D) Find the optimal solution of the original problem, if it exists. (A) Introduce slack, surplus, and artificial variables and form the modified problem. Maximize P=9x₁ +7x2-Ma₁ subject to X₁ + X₂ S₁ + a₁ =2 -X₁+3x₂+ S₂ = 20 X₁, X2, S1, S2, a₁ 20 (B) Write the preliminary simplex tableau for the modified problem and find the initial simplex tableau. X₁ X2 $₁ a₁ $₂ P 1 $₂ 3 20 1 -1 Maximize subject to P=9x₁ +7: X₁ + X₂= -X₁ + 3x₂5 X₁, X₂2
(A) Introduce slack, surplus, and artificial variables and form the modified problem. (B) Write the preliminary simplex tableau for the modified problem and find the initial simplex tableau. (C) Find the optimal solution of the modified problem by applying the simplex method to the initial simplex tableau. (D) Find the optimal solution of the original problem, if it exists. (A) Introduce slack, surplus, and artificial variables and form the modified problem. Maximize P=9x₁ +7x2-Ma₁ subject to X₁ + X₂ S₁ + a₁ =2 -X₁+3x₂+ S₂ = 20 X₁, X2, S1, S2, a₁ 20 (B) Write the preliminary simplex tableau for the modified problem and find the initial simplex tableau. X₁ X2 $₁ a₁ $₂ P 1 $₂ 3 20 1 -1 Maximize subject to P=9x₁ +7: X₁ + X₂= -X₁ + 3x₂5 X₁, X₂2
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![To solve a linear programming problem using the Simplex Method, follow these steps:
### (A) Introduce Slack, Surplus, and Artificial Variables and Formulate the Modified Problem
**Objective:**
\[ \text{Maximize} \quad P = 9x_1 + 7x_2 \]
**Subject to:**
\[ x_1 + x_2 = 2 \]
\[ -x_1 + 3x_2 \leq 20 \]
\[ x_1, x_2 \geq 0 \]
**Introducing Variables:**
1. For the equality constraint \( x_1 + x_2 = 2 \):
- Introduce an artificial variable \( A_1 \).
2. For the inequality \( -x_1 + 3x_2 \leq 20 \):
- Introduce a slack variable \( s_2 \).
**Modified Problem:**
\[ \text{Maximize} \quad P = 9x_1 + 7x_2 - M a_1 \]
**Subject to:**
\[ x_1 + x_2 - s_1 + a_1 = 2 \]
\[ -x_1 + 3x_2 + s_2 = 20 \]
\[ x_1, x_2, s_1, s_2, a_1 \geq 0 \]
### (B) Write the Preliminary Simplex Tableau for the Modified Problem and Find the Initial Simplex Tableau
**Initial Simplex Tableau:**
| Constraints | \( x_1 \) | \( x_2 \) | \( s_1 \) | \( s_2 \) | \( a_1 \) | P | RHS |
|-------------|-----------|-----------|-----------|-----------|-----------|----|-----|
| \( s_1 \) | 1 | 1 | 1 | 0 | 1 | 0 | 2 |
| \( s_2 \) | -1 | 3 | 0 | 1 | 0 | 0 | 20 |
| PL | -9 | -7 | 0 | 0 | M | 1 | 0 |
### Detailed Explanation of the Tableau:
- **Columns](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F49e1171a-c632-491d-85cd-df729265f508%2F7bbfc6cc-cef5-43e8-8eea-935eb67daf07%2F4rmu0w4_processed.png&w=3840&q=75)
Transcribed Image Text:To solve a linear programming problem using the Simplex Method, follow these steps:
### (A) Introduce Slack, Surplus, and Artificial Variables and Formulate the Modified Problem
**Objective:**
\[ \text{Maximize} \quad P = 9x_1 + 7x_2 \]
**Subject to:**
\[ x_1 + x_2 = 2 \]
\[ -x_1 + 3x_2 \leq 20 \]
\[ x_1, x_2 \geq 0 \]
**Introducing Variables:**
1. For the equality constraint \( x_1 + x_2 = 2 \):
- Introduce an artificial variable \( A_1 \).
2. For the inequality \( -x_1 + 3x_2 \leq 20 \):
- Introduce a slack variable \( s_2 \).
**Modified Problem:**
\[ \text{Maximize} \quad P = 9x_1 + 7x_2 - M a_1 \]
**Subject to:**
\[ x_1 + x_2 - s_1 + a_1 = 2 \]
\[ -x_1 + 3x_2 + s_2 = 20 \]
\[ x_1, x_2, s_1, s_2, a_1 \geq 0 \]
### (B) Write the Preliminary Simplex Tableau for the Modified Problem and Find the Initial Simplex Tableau
**Initial Simplex Tableau:**
| Constraints | \( x_1 \) | \( x_2 \) | \( s_1 \) | \( s_2 \) | \( a_1 \) | P | RHS |
|-------------|-----------|-----------|-----------|-----------|-----------|----|-----|
| \( s_1 \) | 1 | 1 | 1 | 0 | 1 | 0 | 2 |
| \( s_2 \) | -1 | 3 | 0 | 1 | 0 | 0 | 20 |
| PL | -9 | -7 | 0 | 0 | M | 1 | 0 |
### Detailed Explanation of the Tableau:
- **Columns
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

