(a) If X1,X2, ..,Xg N(0, 52), then the distribution of is V52/8 (A) N 0, 1 (B) N(0, (C) N(0, 1); (D) N(ã, 1); (E) Unif[0, 1]. V52/8) V52/8)" (b) If B1 ~ Binom(1, p) and B2 ~ Bernoulli(p), independently of each other, then B1 + B2 follows (A) Binom(1, p); (B) Bernoulli(p); (C) Binom(2, p); (D) Binom(3, p²); (E) none of these.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
(a) If \( X_1, X_2, \ldots, X_8 \stackrel{\text{i.i.d.}}{\sim} N(0, 52) \), then the distribution of \(\frac{\bar{X}}{\sqrt{52/8}}\) is 

(A) \( N\left(0, \frac{\bar{X}}{\sqrt{52/8}}\right) \);

(B) \( N\left(0, \frac{1}{\sqrt{52/8}}\right) \);

(C) \( N(0, 1) \);

(D) \( N(\bar{x}, 1) \);

(E) \( \text{Unif}[0, 1] \).

(b) If \( B_1 \sim \text{Binom}(1, p) \) and \( B_2 \sim \text{Bernoulli}(p) \), independently of each other, then \( B_1 + B_2 \) follows

(A) \(\text{Binom}(1, p)\);

(B) \(\text{Bernoulli}(p)\);

(C) \(\text{Binom}(2, p)\);

(D) \(\text{Binom}(3, p^2)\);

(E) none of these.
Transcribed Image Text:(a) If \( X_1, X_2, \ldots, X_8 \stackrel{\text{i.i.d.}}{\sim} N(0, 52) \), then the distribution of \(\frac{\bar{X}}{\sqrt{52/8}}\) is (A) \( N\left(0, \frac{\bar{X}}{\sqrt{52/8}}\right) \); (B) \( N\left(0, \frac{1}{\sqrt{52/8}}\right) \); (C) \( N(0, 1) \); (D) \( N(\bar{x}, 1) \); (E) \( \text{Unif}[0, 1] \). (b) If \( B_1 \sim \text{Binom}(1, p) \) and \( B_2 \sim \text{Bernoulli}(p) \), independently of each other, then \( B_1 + B_2 \) follows (A) \(\text{Binom}(1, p)\); (B) \(\text{Bernoulli}(p)\); (C) \(\text{Binom}(2, p)\); (D) \(\text{Binom}(3, p^2)\); (E) none of these.
Expert Solution
Step 1

(a)

Given information,

Xi's are iids, that is, independent and identically distributed.

X1, X2,.....,X8~N0,52

Answer and explanation:

From the Central Limit Theorem, if X1,.......,Xn are independent and identically distributed random variables with mean μ and variance σ2, then:

X¯~Nμ,σ2nX¯-μσ2/n~N(0,1)

Since, the value of μ is 0 in this case, therefore, X¯52/8~N(0,1).

Hence, the correct answer is option (C), that is, X¯52/8~N(0,1).

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman