A close end tube of thin-walled circular section may be subjected to torque Tand internal pressure P, as shown in Figure Q3. The shear stress in the wall caused by the torque can be calculated as T = T/(2πR²), where the mean radius of the cross section is R (i.e., the radius of the centreline of the wall) and the wall thickness is t. The internal radius of the tube can be calculated as (R-t/2). However, as R>> t, you can approximately assume that the internal radius of the tube is equal to R in the subsequent calculation. The tube is made from a material with Young's modulus E, Poisson's ratio v. Orr T R P 0zz бее Orr Z бее T Ozz Figure Q3 Centreline of the wall [(a) If the change of the diameter cannot exceed 0.1 m under elastic deformation, calculate the minimum allowable wall thickness of the cylindrical pressure vessel. (P=23.6 MPa, T=0 KN.m, R = 2 m, Young's modulus E = 246 GPa, and Poisson's ratio v = 0.21)] Step-3 The functional relationship between the change of the diameter, DD (units: mm), and wall thickness t(units: mm) can be most accurately expressed as Select one: O 1. DD-282.688/t O 2. DD=424.033/t O 3. DD=343.447/t 4. DD = 686.894/t O 5. DD=1696.130/t O 6. DD-228.965/t 7. DD=848.065/t 8. DD=1373.789/t
A close end tube of thin-walled circular section may be subjected to torque Tand internal pressure P, as shown in Figure Q3. The shear stress in the wall caused by the torque can be calculated as T = T/(2πR²), where the mean radius of the cross section is R (i.e., the radius of the centreline of the wall) and the wall thickness is t. The internal radius of the tube can be calculated as (R-t/2). However, as R>> t, you can approximately assume that the internal radius of the tube is equal to R in the subsequent calculation. The tube is made from a material with Young's modulus E, Poisson's ratio v. Orr T R P 0zz бее Orr Z бее T Ozz Figure Q3 Centreline of the wall [(a) If the change of the diameter cannot exceed 0.1 m under elastic deformation, calculate the minimum allowable wall thickness of the cylindrical pressure vessel. (P=23.6 MPa, T=0 KN.m, R = 2 m, Young's modulus E = 246 GPa, and Poisson's ratio v = 0.21)] Step-3 The functional relationship between the change of the diameter, DD (units: mm), and wall thickness t(units: mm) can be most accurately expressed as Select one: O 1. DD-282.688/t O 2. DD=424.033/t O 3. DD=343.447/t 4. DD = 686.894/t O 5. DD=1696.130/t O 6. DD-228.965/t 7. DD=848.065/t 8. DD=1373.789/t
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![A close end tube of thin-walled circular section may be subjected to torque Tand internal pressure P, as shown in Figure Q3. The shear stress in the wall caused by
the torque can be calculated as T = T/(2πR²), where the mean radius of the cross section is R (i.e., the radius of the centreline of the wall) and the wall thickness
is t. The internal radius of the tube can be calculated as (R-t/2). However, as R>> t, you can approximately assume that the internal radius of the tube is equal to R in
the subsequent calculation. The tube is made from a material with Young's modulus E, Poisson's ratio v.
Orr
T
R
P
0zz
бее
Orr
Z
бее
T
Ozz
Figure Q3
Centreline of
the wall](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcdbeedd9-7160-4e48-8601-b290608df50c%2Fd24cfda9-37cd-4e82-85fe-25822147fdb2%2Fdz78llx_processed.png&w=3840&q=75)
Transcribed Image Text:A close end tube of thin-walled circular section may be subjected to torque Tand internal pressure P, as shown in Figure Q3. The shear stress in the wall caused by
the torque can be calculated as T = T/(2πR²), where the mean radius of the cross section is R (i.e., the radius of the centreline of the wall) and the wall thickness
is t. The internal radius of the tube can be calculated as (R-t/2). However, as R>> t, you can approximately assume that the internal radius of the tube is equal to R in
the subsequent calculation. The tube is made from a material with Young's modulus E, Poisson's ratio v.
Orr
T
R
P
0zz
бее
Orr
Z
бее
T
Ozz
Figure Q3
Centreline of
the wall
![[(a) If the change of the diameter cannot exceed 0.1 m under elastic deformation, calculate the minimum allowable wall thickness of the cylindrical pressure vessel.
(P=23.6 MPa, T=0 KN.m, R = 2 m, Young's modulus E = 246 GPa, and Poisson's ratio v = 0.21)]
Step-3
The functional relationship between the change of the diameter, DD (units: mm), and wall thickness t(units: mm) can be most accurately expressed as
Select one:
O 1. DD-282.688/t
O 2. DD=424.033/t
O 3. DD=343.447/t
4. DD = 686.894/t
O 5. DD=1696.130/t
O 6. DD-228.965/t
7. DD=848.065/t
8. DD=1373.789/t](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcdbeedd9-7160-4e48-8601-b290608df50c%2Fd24cfda9-37cd-4e82-85fe-25822147fdb2%2F68jmw5v_processed.png&w=3840&q=75)
Transcribed Image Text:[(a) If the change of the diameter cannot exceed 0.1 m under elastic deformation, calculate the minimum allowable wall thickness of the cylindrical pressure vessel.
(P=23.6 MPa, T=0 KN.m, R = 2 m, Young's modulus E = 246 GPa, and Poisson's ratio v = 0.21)]
Step-3
The functional relationship between the change of the diameter, DD (units: mm), and wall thickness t(units: mm) can be most accurately expressed as
Select one:
O 1. DD-282.688/t
O 2. DD=424.033/t
O 3. DD=343.447/t
4. DD = 686.894/t
O 5. DD=1696.130/t
O 6. DD-228.965/t
7. DD=848.065/t
8. DD=1373.789/t
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY