a If A = 1-[2] and B-[1] = C 0a=c-d Oa=1-d+c The equation det(A + B) = detA + det B is true always and there is no need for any condition 01+d+a-2c=0 Oa=c+d Oc=1+d-a Determine the condition for which det(A + B) = det A + detB. 01+d+a+2c=0
a If A = 1-[2] and B-[1] = C 0a=c-d Oa=1-d+c The equation det(A + B) = detA + det B is true always and there is no need for any condition 01+d+a-2c=0 Oa=c+d Oc=1+d-a Determine the condition for which det(A + B) = det A + detB. 01+d+a+2c=0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Question 15
If A =
a
0a=c-d
Oa=1-d+c
Oa=c+d
Oc=1+d-a
and B
01+d+a+2c=0
< Previous
=
O The equation det(A + B) = detA + det B is true always and there is no need for any condition
01+d+a-2c=0
CH
Determine the condition for which det(A + B) = det A + detB.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1d201c9c-25ee-4236-836f-72837ff5cefb%2F44f7f4d7-f174-45c0-96f8-b972bfe1b3d7%2Fqmhcjp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Question 15
If A =
a
0a=c-d
Oa=1-d+c
Oa=c+d
Oc=1+d-a
and B
01+d+a+2c=0
< Previous
=
O The equation det(A + B) = detA + det B is true always and there is no need for any condition
01+d+a-2c=0
CH
Determine the condition for which det(A + B) = det A + detB.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)