(a) (i) The data below are generated using function f(x) = x cosx-2x² + 3x - 1. Use appropriate Lagrange interpolating formula to approximate f(0.25). 0.0 0.1 0.2 0.3 x f(x) -1.0 0.4 -0.62049958 -0.28398668 0.00660095 0.24842440 1 (ii) Use Lagrange error formula to find a bound for the error and compare the bound to the actual error. (b) Approximate F(0.05) using the following data and Newton's forward- difference formula,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

help

Question 2
(a) (i) The data below are generated using function
f(x) = x cosx-2x² + 3x - 1.
Use appropriate Lagrange interpolating formula to approximate f(0.25).
0.0
0.2
0.3
-1.0
x
f(x)
0.1
-0.62049958 -0.28398668 0.00660095 0.24842440
1
x
f(x)
(ii) Use Lagrange error formula to find a bound for the error and compare
the bound to the actual error.
(b) Approximate F(0.05) using the following data and Newton's forward-
difference formula,
0.4
n
Pn = Σ Σ (1) Δ
r=0
A' f(xo), s =
x-xo
h
Use 6 significant figures throughout your computations.
0.2
0.4
0.6
0.8
0.0
1.00000 1.22140 1.49182 1.82212 2.22554
Transcribed Image Text:Question 2 (a) (i) The data below are generated using function f(x) = x cosx-2x² + 3x - 1. Use appropriate Lagrange interpolating formula to approximate f(0.25). 0.0 0.2 0.3 -1.0 x f(x) 0.1 -0.62049958 -0.28398668 0.00660095 0.24842440 1 x f(x) (ii) Use Lagrange error formula to find a bound for the error and compare the bound to the actual error. (b) Approximate F(0.05) using the following data and Newton's forward- difference formula, 0.4 n Pn = Σ Σ (1) Δ r=0 A' f(xo), s = x-xo h Use 6 significant figures throughout your computations. 0.2 0.4 0.6 0.8 0.0 1.00000 1.22140 1.49182 1.82212 2.22554
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,