A) I = = B) I = C) I= D) I= Consider the double integral xy - SS₁ √²+ + 7² d √√x² Where R is the region of the Plane XY, given by the graph: When transforming the integral applying variable change to polar coordinates we get: 2/3 4 sin 8 4 sin 8 r sin cos drd0 + r sin cos drde 2+4 cos 8 4 sin 8 r² sin 0 cos 0 drd0 + r² sin cos 0 drdo √2+4 cos 0 4 sin 0 r sin cos drd0 + r sin cos drdo √2+4 cos 0 r² sin 0 cos 0 drd0 + 7² sin cos 0 drd0 Je₁ Sot JO₁ 2x/3 5/6 JO₁ 5/6 4 sin 0 Love JO₁ I= J2n/3 J0 2/3 J0 S/S 5л/6 f. 4 sin 4 sin 0 -4 sin 0 dA x² + (y-2)² = 4 R r = 2+4 cos 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
A) I = =
B) I =
C) I=
D) I=
Consider the double integral
xy
- SS₁ √ 2 ² + y ² d
Where R is the region of the Plane XY, given by the graph:
When transforming the integral applying variable change to polar coordinates we get:
2/3
4 sin 8
4 sin 8
r sin cos drd0 +
r sin cos drd0
2+4 cos 8
4 sin 8
r² sin cos 0 drd0 +
7² sin cos 0 drd0
√2+4 cos 0
4 sin 0
r sin cos 0 drd0 +
r sin cos drdo
√2+4 cos 0
r² sin 0 cos 0 drd0 +
Jo₁
So
0₁
2/3
5/6
JO₁
South
JO₁
5/6 4 sin 0
I=
J2n/3 JO
2/3.
St. Jo
5л/6
f.
4 sin
4 sin
-4 sin 0
dA
² sin 0 cos 0 drd0
x² + (y-2)² = 4
R
r=2+4 cos 0
Transcribed Image Text:A) I = = B) I = C) I= D) I= Consider the double integral xy - SS₁ √ 2 ² + y ² d Where R is the region of the Plane XY, given by the graph: When transforming the integral applying variable change to polar coordinates we get: 2/3 4 sin 8 4 sin 8 r sin cos drd0 + r sin cos drd0 2+4 cos 8 4 sin 8 r² sin cos 0 drd0 + 7² sin cos 0 drd0 √2+4 cos 0 4 sin 0 r sin cos 0 drd0 + r sin cos drdo √2+4 cos 0 r² sin 0 cos 0 drd0 + Jo₁ So 0₁ 2/3 5/6 JO₁ South JO₁ 5/6 4 sin 0 I= J2n/3 JO 2/3. St. Jo 5л/6 f. 4 sin 4 sin -4 sin 0 dA ² sin 0 cos 0 drd0 x² + (y-2)² = 4 R r=2+4 cos 0
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,