A hypothetical metal, which is a single crystal and made up of one chemical element, has an FCC crystal structure. Given the density of the metal is 10 g/cm3 and the atomic weight/mass of the metal is 100 g/mol, estimate the atomic radius of the metal. Note: Avogadro's number NA = 6.022×1023 atoms/mol
A hypothetical metal, which is a single crystal and made up of one chemical element, has an FCC crystal structure. Given the density of the metal is 10 g/cm3 and the atomic weight/mass of the metal is 100 g/mol, estimate the atomic radius of the metal. Note: Avogadro's number NA = 6.022×1023 atoms/mol
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![### Estimating the Atomic Radius of a Hypothetical Metal
**Problem Statement:**
A hypothetical metal, which is a single crystal and made up of one chemical element, has an FCC (Face-Centered Cubic) crystal structure. Given the density of the metal is 10 g/cm³ and the atomic weight/mass of the metal is 100 g/mol, estimate the atomic radius of the metal.
**Given Data:**
1. Density (\(\rho\)) of the metal: 10 g/cm³
2. Atomic weight/mass (M) of the metal: 100 g/mol
3. Avogadro's number (\(N_A\)): \(6.022 \times 10^{23}\) atoms/mol
**Solution:**
To estimate the atomic radius, we use the following steps:
1. **Determine the Number of Atoms per cm³:**
The density equation for atoms in a unit volume of the metal can be expressed as:
\[\rho = \frac{n \cdot M}{V\cdot N_A}\]
Where \(n\) is the number of atoms per unit cell and \(V\) is the volume of the unit cell. Rearranging for \(V\):
\[V = \frac{n \cdot M}{\rho \cdot N_A}\]
For an FCC structure, the number of atoms per unit cell \(n\) is 4.
2. **Calculate the Volume of the Unit Cell:**
\[V = \frac{4 \cdot 100 \text{ g/mol}}{10 \text{ g/cm}^3 \cdot 6.022 \times 10^{23} \text{ atoms/mol}}\]
3. **Convert the Volume to Appropriate Units:**
Calculate \(V\) to find the unit cell volume in cm³ and subsequently convert it to cubic angstroms (ų) if necessary for precision in determining the atomic radius.
4. **Determine the Atomic Radius:**
The volume of a cubic unit cell \(V\) can also be related to the lattice parameter \(a\) (where \(V = a^3\)). For an FCC lattice, the relationship between the lattice parameter \(a\) and the atomic radius \(R\) is:
\[a = \frac{4R}{\sqrt{2}}\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd9f391b6-5f04-4d98-9bc5-d57c88046352%2F5463e54d-a26e-4217-9d1c-454d585110d9%2Fs8f9nzh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Estimating the Atomic Radius of a Hypothetical Metal
**Problem Statement:**
A hypothetical metal, which is a single crystal and made up of one chemical element, has an FCC (Face-Centered Cubic) crystal structure. Given the density of the metal is 10 g/cm³ and the atomic weight/mass of the metal is 100 g/mol, estimate the atomic radius of the metal.
**Given Data:**
1. Density (\(\rho\)) of the metal: 10 g/cm³
2. Atomic weight/mass (M) of the metal: 100 g/mol
3. Avogadro's number (\(N_A\)): \(6.022 \times 10^{23}\) atoms/mol
**Solution:**
To estimate the atomic radius, we use the following steps:
1. **Determine the Number of Atoms per cm³:**
The density equation for atoms in a unit volume of the metal can be expressed as:
\[\rho = \frac{n \cdot M}{V\cdot N_A}\]
Where \(n\) is the number of atoms per unit cell and \(V\) is the volume of the unit cell. Rearranging for \(V\):
\[V = \frac{n \cdot M}{\rho \cdot N_A}\]
For an FCC structure, the number of atoms per unit cell \(n\) is 4.
2. **Calculate the Volume of the Unit Cell:**
\[V = \frac{4 \cdot 100 \text{ g/mol}}{10 \text{ g/cm}^3 \cdot 6.022 \times 10^{23} \text{ atoms/mol}}\]
3. **Convert the Volume to Appropriate Units:**
Calculate \(V\) to find the unit cell volume in cm³ and subsequently convert it to cubic angstroms (ų) if necessary for precision in determining the atomic radius.
4. **Determine the Atomic Radius:**
The volume of a cubic unit cell \(V\) can also be related to the lattice parameter \(a\) (where \(V = a^3\)). For an FCC lattice, the relationship between the lattice parameter \(a\) and the atomic radius \(R\) is:
\[a = \frac{4R}{\sqrt{2}}\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY