A hurricane is a tropical storm formed over the ocean by low atmospheric pressures. As a hurricane approaches land, inordinate ocean swells (very high tides) accompany the hurricane. A Class-5 hurricane features winds in excess of 155 mph, although the wind velocity at the center "eye" is very low.
A hurricane is a tropical storm formed over the ocean by low atmospheric pressures. As a hurricane approaches land, inordinate ocean swells (very high tides) accompany the hurricane. A Class-5 hurricane features winds in excess of 155 mph, although the wind velocity at the center "eye" is very low.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Write what you understand and conclusion in this example, answer simply.

Transcribed Image Text:EXAMPLE 5–9
The Rise of the Ocean Due to a Hurricane
A hurricane is a tropical storm formed over the ocean by low atmospheric
pressures. As a hurricane approaches land, inordinate ocean swells (very
high tides) accompany the hurricane. A Class-5 hurricane features winds in
excess of 155 mph, although the wind velocity at the center "eye" is very
( Eye
Hurricane
low.
Calm
Figure 5-42 depicts a hurricane hovering over the ocean swell below. The
atmospheric pressure 200 mi from the eye is 30.0 in Hg (at point 1, gener-
ally normal for the ocean) and the winds are calm. The hurricane atmo-
spheric pressure at the eye of the storm is 22.0 in Hg. Estimate the ocean
оссan
O level
Оссan
swell at (a) the eye of the hurricane at point 3 and (b) point 2, where the
wind velocity is 155 mph. Take the density of seawater and mercury to be
64 Ibm/ft and 848 Ibm/ft?, respectively, and the density of air at normal
sea-level temperature and pressure to be 0.076 Ibm/ft.
FIGURE 5-42
Schematic for Example 5–9. The
vertical scale is greatly exaggerated.
SOLUTION A hurricane is moving over the ocean. The amount of ocean
swell at the eye and at active regions of the hurricane are to be determined.
Assumptions 1 The airflow within the hurricane is steady, incompressible,
and irrotational (so that the Bernoulli equation is applicable). (This is cer-
tainly a very questionable assumption for a highly turbulent flow, but it is jus-
tified in the solution.) 2 The effect of water drifted into the air is negligible.
Properties The densities of air at normal conditions, seawater, and mercury
are given to be 0.076 Ibm/ft, 64 Ibm/ft³, and 848 Ibm/ft?, respectively.
Analysis (a) Reduced atmospheric pressure over the water causes the water
to rise. Thus, decreased pressure at point 2 relative to point 1 causes the
ocean water to rise at point 2. The same is true at point 3, where the storm air
velocity is negligible. The pressure difference given in terms of the mercury
column height can be expressed in terms of the seawater column height by
AP = (pgh)Hg = (Pgh),w → hw
Psw
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY