A HeNe laser generates laser light with an output of 2.00mW and a wavelength of 632.8nm. a) how many photons do the larsen leave every second? b) if the laser beam illuminates an aluminum surface for one minute, which is the maximum number of electrons that can be released during that minute. c) what wavelength would the laser light need to have in order for the shortest de Broglie wavelength of the released electrons to be 548 pm d) if light with the wavelength you calculated in problem c) would illuminate a golden white instead, would you then expect released electrons with a shorter de Broglie wavelength than that in problem c)? Motivate your answer
A HeNe laser generates laser light with an output of 2.00mW and a wavelength of 632.8nm. a) how many photons do the larsen leave every second? b) if the laser beam illuminates an aluminum surface for one minute, which is the maximum number of electrons that can be released during that minute. c) what wavelength would the laser light need to have in order for the shortest de Broglie wavelength of the released electrons to be 548 pm d) if light with the wavelength you calculated in problem c) would illuminate a golden white instead, would you then expect released electrons with a shorter de Broglie wavelength than that in problem c)? Motivate your answer
Related questions
Question
A HeNe laser generates laser light with an output of 2.00mW and a wavelength of 632.8nm.
a) how many photons do the larsen leave every second?
b) if the laser beam illuminates an aluminum surface for one minute, which is the maximum number of electrons that can be released during that minute.
c) what wavelength would the laser light need to have in order for the shortest de Broglie wavelength of the released electrons to be 548 pm
d) if light with the wavelength you calculated in problem c) would illuminate a golden white instead, would you then expect released electrons with a shorter de Broglie wavelength than that in problem c)? Motivate your answer
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 3 images