A helium balloon is inflated to 1.08 bars (gauge) and released. It has a diameter of 0.3 m and can be assumed to be a smooth sphere. The mass of the latex balloon material is 3 g. The surrounding air is at 20°C. (a) Considering that the helium is pressurized, what is the density of the helium? (b) What is the total weight of the balloon including the helium and latex? (c) What is the magnitude of the buoyancy force? (d) What is the fastest upward velocity of the balloon? Don't account for elevation affecting the
A helium balloon is inflated to 1.08 bars (gauge) and released. It has a diameter of 0.3 m and can be assumed to be a smooth sphere. The mass of the latex balloon material is 3 g. The surrounding air is at 20°C. (a) Considering that the helium is pressurized, what is the density of the helium? (b) What is the total weight of the balloon including the helium and latex? (c) What is the magnitude of the buoyancy force? (d) What is the fastest upward velocity of the balloon? Don't account for elevation affecting the
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:A helium balloon is inflated to 1.08 bars (gauge) and released. It has a diameter of 0.3 m and can be
assumed to be a smooth sphere. The mass of the latex balloon material is 3 g. The surrounding air is
at 20°C.
(a) Considering that the helium is pressurized, what is the density of the helium?
(b) What is the total weight of the balloon including the helium and latex?
(c) What is the magnitude of the buoyancy force?
(d) What is the fastest upward velocity of the balloon? Don't account for elevation affecting the
surrounding air properties.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY