A guitar string of length L = 0.99 m is oriented along the x-direction and under a tension of T = 118 N. The string is made of steel which has a density of ρ = 7800 kg / m3. The radius of the string is r = 9.4 x 10-4 m. A transverse wave of amplitude A = 0.0020 m is formed on the string. Part (a)  Calculate the mass per unit length μ of the guitar string in kg / m.  Part (b)  Calculate the velocity (in m/s) of a traveling transverse wave on the guitar string.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%

Just need to be shown parts (a) and (b)

Problem 12:   A guitar string of length L = 0.99 m is oriented along the x-direction and under a tension of T = 118 N. The string is made of steel which has a density of ρ = 7800 kg / m3. The radius of the string is r = 9.4 x 10-4 m. A transverse wave of amplitude A = 0.0020 m is formed on the string.

Part (a)  Calculate the mass per unit length μ of the guitar string in kg / m. 
Part (b)  Calculate the velocity (in m/s) of a traveling transverse wave on the guitar string. 
Part (c)  Assume a form y1 = A sin(α) for the transverse displacement of the string. Enter an expression for α of a transverse wave on a string traveling along the positive x-direction in terms of its wavenumber k, the position x, its angular frequency ω, and the time t

α = k x - ω t     ✔ Correct!  

Part (d)  Assume a form y2 = A sin(α) for the transverse displacement of the string. Write an expression for α of a transverse wave on a string traveling along the negative x-direction in terms of its wavenumber k, the position x, its angular frequency ω, and the time t

α = k x + ω t     ✔ Correct!  

Part (e)  Write an equation for a standing wave on the string y(x,t) created by y1(x,t) and y2(x,t) in terms of the amplitude of the original traveling waves A, its wavenumber k, the position x, its angular frequency ω, and the time t. Use a trigonometric identity so that y(x,t) contains a sine term dependent only on k and x and a cosine term dependent only on ω and t

y(x,t) = 2 A cos(ωt) sin(kx) 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Stretched string
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON