A good curve-fit to the head vs. flow for the 32-inch pump in the image shown below is: H(inft)≈500−(2.9E−7)Q2,Qingal/minH(in ft)≈500−(2.9E−7)Q2 , Q in gal/min Assume the same rotation rate, 1170 r/min, and estimate the flow rate this pump will provide to deliver water from a reservoir, through 900 ft of 12-inch pipe, to a point 300 ft above the reservoir surface. Assume a friction factor f = 0.019.
A good curve-fit to the head vs. flow for the 32-inch pump in the image shown below is: H(inft)≈500−(2.9E−7)Q2,Qingal/minH(in ft)≈500−(2.9E−7)Q2 , Q in gal/min Assume the same rotation rate, 1170 r/min, and estimate the flow rate this pump will provide to deliver water from a reservoir, through 900 ft of 12-inch pipe, to a point 300 ft above the reservoir surface. Assume a friction factor f = 0.019.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A good curve-fit to the head vs. flow for the 32-inch pump in the image shown below is:
H(inft)≈500−(2.9E−7)Q2,Qingal/minH(in ft)≈500−(2.9E−7)Q2 , Q in gal/min
Assume the same rotation rate, 1170 r/min, and estimate the flow rate this pump will provide to deliver water from a reservoir, through 900 ft of 12-inch pipe, to a point 300 ft above the reservoir surface. Assume a friction factor f = 0.019.
Answer in gal/min

Transcribed Image Text:n = 1170 r/min
50
800
NPSH
700
36금-in dia.
20
600
32-in dia.
87%
500
400
2500 bhp
28-in dia.
300
1500 bhp
200
4
8
12
16
20
24
28
U.S. gallons per minute x 1000
NPSH, ft
%88
3500 bhp
8%,
3000 bhp
%78
- 87%
%8/.
2000 bhp
Total head, ft
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY