A golf club has a lightweight flexible shaft with a heavy block of wood or metal (called the head of the club) at the end. A golfer making a long shot off the tee uses a driver, a club whose 300 g head is much more massive than the 46 g ball it will hit. The golfer swings the driver so that the club head is moving at 40 m/s just before it collides with the ball. The collision is so rapid that it can be treated as the collision of a moving 300 g mass (the club head) with a stationary 46 g mass (the ball); the shaft of the club and the golfer can be ignored. The collision takes 5.0 ms, and the ball leaves the tee with a speed of 63 m/s. If we define the kinetic energy of the club head before the collision as “what you had to pay” and the kinetic energy of the ball immediately after as “what you get,” what is the efficiency of this energy transfer?A. 0.54                B. 0.46               C. 0.38         D. 0.27

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

A golf club has a lightweight flexible shaft with a heavy block of wood or metal (called the head of the club) at the end. A golfer making a long shot off the tee uses a driver, a club whose 300 g head is much more massive than the 46 g ball it will hit. The golfer swings the driver so that the club head is moving at 40 m/s just before it collides with the ball. The collision is so rapid that it can be treated as the collision of a moving 300 g mass (the club head) with a stationary 46 g mass (the ball); the shaft of the club and the golfer can be ignored. The collision takes 5.0 ms, and the ball leaves the tee with a speed of 63 m/s.

If we define the kinetic energy of the club head before the collision as “what you had to pay” and the kinetic energy of the ball immediately after as “what you get,” what is the efficiency of this energy transfer?
A. 0.54                B. 0.46               C. 0.38         D. 0.27

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Impulse
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON