A gas-turbine power plant operates on the regenerative Brayton cycle between the pressure limits of 100 and 700 kPa. Air enters the compressor at 30°C at a rate of 12.6 kg/s and leaves at 260°C. It is then heated in a regenerator to 400°C by the hot combustion gases leaving the turbine. A diesel fuel with a heating value of 42,000 kJ/kg is burned in the combustion chamber with a combustion efficiency of 97 percent. The combustion gases leave the combustion chamber at 871°C and enter the turbine whose isentropic efficiency is 85 percent. Treating combustion gases as air and using constant specific heats at 500°C, The properties of air at 500ºC = 773 K are cp = 1.093 kJ/kg·K, cv = 0.806 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.357 a) the isentropic efficiency of the compressor (b) the effectiveness of the regenerator (c) the air–fuel ratio in the combustion chamber
A gas-turbine power plant operates on the regenerative Brayton cycle between the pressure limits of 100 and 700 kPa. Air enters the compressor at 30°C at a rate of 12.6 kg/s and leaves at 260°C. It is then heated in a regenerator to 400°C by the hot combustion gases leaving the turbine. A diesel fuel with a heating value of 42,000 kJ/kg is burned in the combustion chamber with a combustion efficiency of 97 percent. The combustion gases leave the combustion chamber at 871°C and enter the turbine whose isentropic efficiency is 85 percent. Treating combustion gases as air and using constant specific heats at 500°C, The properties of air at 500ºC = 773 K are cp = 1.093 kJ/kg·K, cv = 0.806 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.357
a) the isentropic efficiency of the compressor
(b) the effectiveness of the regenerator
(c) the air–fuel ratio in the combustion chamber
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 1 images