A gas sample is under an initial set of conditions (i) and is then changed to a final set of conditions (f). Use the combined gas law to calculate the unknown final parameter for this gas sample. P 3.90 atm V 3.00 L T 310. K P, ? atm V, 6.90 L T 470. K
A gas sample is under an initial set of conditions (i) and is then changed to a final set of conditions (f). Use the combined gas law to calculate the unknown final parameter for this gas sample. P 3.90 atm V 3.00 L T 310. K P, ? atm V, 6.90 L T 470. K
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![### Gas Law Problems: Calculate the Unknown Parameter
**Instructions**: This question has multiple parts. Work all the parts to get the most points.
A gas sample is under an initial set of conditions (i) and is then changed to a final set of conditions (f). Use the combined gas law to calculate the unknown final parameter for this gas sample.
#### Problem (a)
- **Initial Conditions (i):**
\( P_i = 3.90 \text{ atm} \)
\( V_i = 3.00 \text{ L} \)
\( T_i = 310. \text{ K} \)
- **Final Conditions (f):**
\( P_f = ? \text{ atm} \)
\( V_f = 6.90 \text{ L} \)
\( T_f = 470. \text{ K} \)
Use the equation:
\[ P_i V_i / T_i = P_f V_f / T_f \]
to solve for \( P_f \):
\[ P_f = \_\_\_\_\_\_ \text{ atm} \]
#### Problem (b)
- **Initial Conditions (i):**
\( P_i = 4.37 \text{ atm} \)
\( V_i = 1.82 \text{ L} \)
\( T_i = 289 \text{ K} \)
- **Final Conditions (f):**
\( P_f = 2.01 \text{ atm} \)
\( V_f = ? \text{ L} \)
\( T_f = 370. \text{ K} \)
Use the equation:
\[ P_i V_i / T_i = P_f V_f / T_f \]
to solve for \( V_f \):
\[ V_f = \_\_\_\_\_\_ \text{ L} \]
**Explanation**:
- \( P \) represents pressure
- \( V \) represents volume
- \( T \) represents temperature
- Subscript \( i \) refers to initial conditions
- Subscript \( f \) refers to final conditions
By understanding and applying the Combined Gas Law, we can determine unknown variables given a set of initial and final conditions of a gas sample.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F40fff8cd-053c-4eec-9b68-327a5d917b73%2F77c3f899-d745-43a2-99e4-f4bfa4a7f4e9%2Fkwp3co3_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Gas Law Problems: Calculate the Unknown Parameter
**Instructions**: This question has multiple parts. Work all the parts to get the most points.
A gas sample is under an initial set of conditions (i) and is then changed to a final set of conditions (f). Use the combined gas law to calculate the unknown final parameter for this gas sample.
#### Problem (a)
- **Initial Conditions (i):**
\( P_i = 3.90 \text{ atm} \)
\( V_i = 3.00 \text{ L} \)
\( T_i = 310. \text{ K} \)
- **Final Conditions (f):**
\( P_f = ? \text{ atm} \)
\( V_f = 6.90 \text{ L} \)
\( T_f = 470. \text{ K} \)
Use the equation:
\[ P_i V_i / T_i = P_f V_f / T_f \]
to solve for \( P_f \):
\[ P_f = \_\_\_\_\_\_ \text{ atm} \]
#### Problem (b)
- **Initial Conditions (i):**
\( P_i = 4.37 \text{ atm} \)
\( V_i = 1.82 \text{ L} \)
\( T_i = 289 \text{ K} \)
- **Final Conditions (f):**
\( P_f = 2.01 \text{ atm} \)
\( V_f = ? \text{ L} \)
\( T_f = 370. \text{ K} \)
Use the equation:
\[ P_i V_i / T_i = P_f V_f / T_f \]
to solve for \( V_f \):
\[ V_f = \_\_\_\_\_\_ \text{ L} \]
**Explanation**:
- \( P \) represents pressure
- \( V \) represents volume
- \( T \) represents temperature
- Subscript \( i \) refers to initial conditions
- Subscript \( f \) refers to final conditions
By understanding and applying the Combined Gas Law, we can determine unknown variables given a set of initial and final conditions of a gas sample.
![### Example Problem: Ideal Gas Law Application
Given the following initial and final states of an ideal gas, calculate the unknown final temperature.
**Initial Conditions:**
- Initial Pressure, \( P_i \): 7.71 atm
- Initial Volume, \( V_i \): 8.05 L
- Initial Temperature, \( T_i \): 590. K
**Final Conditions:**
- Final Pressure, \( P_f \): 3.10 atm
- Final Volume, \( V_f \): 7.00 L
- Final Temperature, \( T_f \): ? K
Calculate the final temperature \( T_f \).
\[ T_f = \, \boxed{ \ \ } \, \text{K} \]
### Explanation:
To solve this problem, we can use the Ideal Gas Law's combined form:
\[ \frac{P_i \cdot V_i}{T_i} = \frac{P_f \cdot V_f}{T_f} \]
Rearrenging to solve for \( T_f \):
\[ T_f = \frac{P_f \cdot V_f \cdot T_i}{P_i \cdot V_i} \]
Substitute the values:
\[ T_f = \frac{(3.10 \, \text{atm}) \cdot (7.00 \, \text{L}) \cdot (590. \, \text{K})}{(7.71 \, \text{atm}) \cdot (8.05 \, \text{L})} \]
Calculate \( T_f \):
\[ T_f = \boxed{K} \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F40fff8cd-053c-4eec-9b68-327a5d917b73%2F77c3f899-d745-43a2-99e4-f4bfa4a7f4e9%2Fjf3gg8p_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Example Problem: Ideal Gas Law Application
Given the following initial and final states of an ideal gas, calculate the unknown final temperature.
**Initial Conditions:**
- Initial Pressure, \( P_i \): 7.71 atm
- Initial Volume, \( V_i \): 8.05 L
- Initial Temperature, \( T_i \): 590. K
**Final Conditions:**
- Final Pressure, \( P_f \): 3.10 atm
- Final Volume, \( V_f \): 7.00 L
- Final Temperature, \( T_f \): ? K
Calculate the final temperature \( T_f \).
\[ T_f = \, \boxed{ \ \ } \, \text{K} \]
### Explanation:
To solve this problem, we can use the Ideal Gas Law's combined form:
\[ \frac{P_i \cdot V_i}{T_i} = \frac{P_f \cdot V_f}{T_f} \]
Rearrenging to solve for \( T_f \):
\[ T_f = \frac{P_f \cdot V_f \cdot T_i}{P_i \cdot V_i} \]
Substitute the values:
\[ T_f = \frac{(3.10 \, \text{atm}) \cdot (7.00 \, \text{L}) \cdot (590. \, \text{K})}{(7.71 \, \text{atm}) \cdot (8.05 \, \text{L})} \]
Calculate \( T_f \):
\[ T_f = \boxed{K} \]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY