a f(z) = % + Em (an cos nga + bn sin nga) n=1 3 After writing the Fourier representation with an = 1/L²³²3. f(x) cos dx, n = 0, 1, 2, ... bn = ²³3 f(x) sin ª dx, NAX 3 n=1,2,... use the exponential forms eio te-io COSA = sin 0 eio 2 2 2i of the cosine and sine functions to put that representation in exponential form: f(x) = Σ An exp (i) where Ao ao NTX 3 An an-ibn 2 = - A-n i0 an+ibn 2 (n = 1, 2, ...). b) An = ³3 f(x) exp(-i) dx (n = 0, 1, 2, ...) 6 Then use expression of an and bn to obtain a single formula

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Fourier Representation and Exponential Form

#### a) Fourier Series Representation

After writing the Fourier representation:

\[ 
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n \pi x}{3} + b_n \sin \frac{n \pi x}{3} \right) 
\]

where

\[
a_n = \frac{1}{3} \int_{-3}^{3} f(x) \cos \frac{n \pi x}{3} \, dx, \quad n = 0, 1, 2, \ldots 
\]

\[
b_n = \frac{1}{3} \int_{-3}^{3} f(x) \sin \frac{n \pi x}{3} \, dx, \quad n = 1, 2, \ldots 
\]

Using the exponential forms:

\[ 
\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} 
\]

of the cosine and sine functions to express the representation in exponential form:

\[
f(x) = \sum_{-\infty}^{\infty} A_n \exp \left( i \frac{n \pi x}{3} \right)
\]

where

\[
A_0 = \frac{a_0}{2}, \quad A_n = \frac{a_n - ib_n}{2}, \quad A_{-n} = \frac{a_n + ib_n}{2} \quad (n = 1, 2, \ldots)
\]

#### b) Single Formula for \(A_n\)

Then, use the expression of \(a_n\) and \(b_n\) to obtain a single formula:

\[
A_n = \frac{1}{6} \int_{-3}^{3} f(x) \exp \left( -i \frac{n \pi x}{3} \right) \, dx \quad (n = 0, \pm1, \pm2, \ldots)
\]
Transcribed Image Text:### Fourier Representation and Exponential Form #### a) Fourier Series Representation After writing the Fourier representation: \[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n \pi x}{3} + b_n \sin \frac{n \pi x}{3} \right) \] where \[ a_n = \frac{1}{3} \int_{-3}^{3} f(x) \cos \frac{n \pi x}{3} \, dx, \quad n = 0, 1, 2, \ldots \] \[ b_n = \frac{1}{3} \int_{-3}^{3} f(x) \sin \frac{n \pi x}{3} \, dx, \quad n = 1, 2, \ldots \] Using the exponential forms: \[ \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \] of the cosine and sine functions to express the representation in exponential form: \[ f(x) = \sum_{-\infty}^{\infty} A_n \exp \left( i \frac{n \pi x}{3} \right) \] where \[ A_0 = \frac{a_0}{2}, \quad A_n = \frac{a_n - ib_n}{2}, \quad A_{-n} = \frac{a_n + ib_n}{2} \quad (n = 1, 2, \ldots) \] #### b) Single Formula for \(A_n\) Then, use the expression of \(a_n\) and \(b_n\) to obtain a single formula: \[ A_n = \frac{1}{6} \int_{-3}^{3} f(x) \exp \left( -i \frac{n \pi x}{3} \right) \, dx \quad (n = 0, \pm1, \pm2, \ldots) \]
Expert Solution
Step 1

For (a),

We are given the following Fourier representation.

          f(x)=a02+n=1ancosnπx3+bnsinnπx3   ------------(1)

with   

          an=13-33f(x)cosnπx3dx, n=0, 1, 2, ...bn=13-33f(x)sinnπx3dx, n=1, 2, ....      ------------(2)

Now, we will us the exponential forms cos θ=eiθ+e-iθ2, sin θ=eiθ-e-iθ2i of the cosine and sine functions to put that representation in exponential form: 

                      f(x)=n=-Anexpinπx3                     -------------(3)

where

                       A0=a02, An=an-ibn2, A-n=an+ibn2   (n=1, 2, ...)      ---------(4)

From equation (1),

                    f(x)=a02+n=1anexpinπx3+exp-inπx32+bnexpinπx3-exp-inπx32i       =a02+n=1expinπx3an2+bn2i+exp-inπx3an2-bn2i       =a02+n=1expinπx3an2-ibn2+exp-inπx3an2+ibn2       =a02+n=1expinπx3an-ibn2+exp-inπx3an+ibn2

Let us use equation (4),

                           =A0+n=1expinπx3An+exp-inπx3A-n=A0+n=1Anexpinπx3+A-nexp-inπx3=A0+n=1Anexpinπx3+A-nexpi(-n)πx3=n=-Anexpinπx3

Hence proved!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,