a f(z) = % + Em (an cos nga + bn sin nga) n=1 3 After writing the Fourier representation with an = 1/L²³²3. f(x) cos dx, n = 0, 1, 2, ... bn = ²³3 f(x) sin ª dx, NAX 3 n=1,2,... use the exponential forms eio te-io COSA = sin 0 eio 2 2 2i of the cosine and sine functions to put that representation in exponential form: f(x) = Σ An exp (i) where Ao ao NTX 3 An an-ibn 2 = - A-n i0 an+ibn 2 (n = 1, 2, ...). b) An = ³3 f(x) exp(-i) dx (n = 0, 1, 2, ...) 6 Then use expression of an and bn to obtain a single formula
a f(z) = % + Em (an cos nga + bn sin nga) n=1 3 After writing the Fourier representation with an = 1/L²³²3. f(x) cos dx, n = 0, 1, 2, ... bn = ²³3 f(x) sin ª dx, NAX 3 n=1,2,... use the exponential forms eio te-io COSA = sin 0 eio 2 2 2i of the cosine and sine functions to put that representation in exponential form: f(x) = Σ An exp (i) where Ao ao NTX 3 An an-ibn 2 = - A-n i0 an+ibn 2 (n = 1, 2, ...). b) An = ³3 f(x) exp(-i) dx (n = 0, 1, 2, ...) 6 Then use expression of an and bn to obtain a single formula
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Fourier Representation and Exponential Form
#### a) Fourier Series Representation
After writing the Fourier representation:
\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n \pi x}{3} + b_n \sin \frac{n \pi x}{3} \right)
\]
where
\[
a_n = \frac{1}{3} \int_{-3}^{3} f(x) \cos \frac{n \pi x}{3} \, dx, \quad n = 0, 1, 2, \ldots
\]
\[
b_n = \frac{1}{3} \int_{-3}^{3} f(x) \sin \frac{n \pi x}{3} \, dx, \quad n = 1, 2, \ldots
\]
Using the exponential forms:
\[
\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}
\]
of the cosine and sine functions to express the representation in exponential form:
\[
f(x) = \sum_{-\infty}^{\infty} A_n \exp \left( i \frac{n \pi x}{3} \right)
\]
where
\[
A_0 = \frac{a_0}{2}, \quad A_n = \frac{a_n - ib_n}{2}, \quad A_{-n} = \frac{a_n + ib_n}{2} \quad (n = 1, 2, \ldots)
\]
#### b) Single Formula for \(A_n\)
Then, use the expression of \(a_n\) and \(b_n\) to obtain a single formula:
\[
A_n = \frac{1}{6} \int_{-3}^{3} f(x) \exp \left( -i \frac{n \pi x}{3} \right) \, dx \quad (n = 0, \pm1, \pm2, \ldots)
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9c55fd55-ae67-4b97-a36c-91359ff73a6f%2Ff126bd7d-9420-457d-993e-0923154c6dbf%2Fcvxjaxx_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Fourier Representation and Exponential Form
#### a) Fourier Series Representation
After writing the Fourier representation:
\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n \pi x}{3} + b_n \sin \frac{n \pi x}{3} \right)
\]
where
\[
a_n = \frac{1}{3} \int_{-3}^{3} f(x) \cos \frac{n \pi x}{3} \, dx, \quad n = 0, 1, 2, \ldots
\]
\[
b_n = \frac{1}{3} \int_{-3}^{3} f(x) \sin \frac{n \pi x}{3} \, dx, \quad n = 1, 2, \ldots
\]
Using the exponential forms:
\[
\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}
\]
of the cosine and sine functions to express the representation in exponential form:
\[
f(x) = \sum_{-\infty}^{\infty} A_n \exp \left( i \frac{n \pi x}{3} \right)
\]
where
\[
A_0 = \frac{a_0}{2}, \quad A_n = \frac{a_n - ib_n}{2}, \quad A_{-n} = \frac{a_n + ib_n}{2} \quad (n = 1, 2, \ldots)
\]
#### b) Single Formula for \(A_n\)
Then, use the expression of \(a_n\) and \(b_n\) to obtain a single formula:
\[
A_n = \frac{1}{6} \int_{-3}^{3} f(x) \exp \left( -i \frac{n \pi x}{3} \right) \, dx \quad (n = 0, \pm1, \pm2, \ldots)
\]
Expert Solution

Step 1
For (a),
We are given the following Fourier representation.
------------(1)
with
. ------------(2)
Now, we will us the exponential forms of the cosine and sine functions to put that representation in exponential form:
-------------(3)
where
---------(4)
From equation (1),
Let us use equation (4),
Hence proved!
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

