A function of period 2L has the form f(x) = L²x², xe [-L, L]. i) Compute the Fourier series for this function. ii) By choosing an appropriate value of a show that an infinite series can be con- structed for T².

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Needed to be solved correctly in 30 minutes and get the thumbs up please show neat and clean work by hand solution needed
Question 8
A function of period 2L has the form
f(x)=L²x².
i) Compute the Fourier series for this function.
ii) By choosing an appropriate value of a show that an infinite series can be con-
structed for 7².
The following indefinite integrals might be useful.
L
n²7²
(L sin (27²)
,
J
[₁
J
² sin
² cos
x sin
x Cos
nTX
nTX
nTX
ᎡᏤᏆ .
L
dx =
dx =
dx =
dx =
L
n³73
L
n³73
L
n²π²
x € [-L, L].
L cos
2Lnxx sin
(2Lm
2LnTx cos
nπx
L
nTX
L
NTX
$(TTT)) +
-nTX COS
+ nπx sin
NTX
L
+ C
(2L² -n²²x²) sin
+C
+ (2L² − n²π²x²) cos (¹T)) + ¤
(ntx)) +
+C.
Transcribed Image Text:Question 8 A function of period 2L has the form f(x)=L²x². i) Compute the Fourier series for this function. ii) By choosing an appropriate value of a show that an infinite series can be con- structed for 7². The following indefinite integrals might be useful. L n²7² (L sin (27²) , J [₁ J ² sin ² cos x sin x Cos nTX nTX nTX ᎡᏤᏆ . L dx = dx = dx = dx = L n³73 L n³73 L n²π² x € [-L, L]. L cos 2Lnxx sin (2Lm 2LnTx cos nπx L nTX L NTX $(TTT)) + -nTX COS + nπx sin NTX L + C (2L² -n²²x²) sin +C + (2L² − n²π²x²) cos (¹T)) + ¤ (ntx)) + +C.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,