A​ fruit-packing company produced peaches last summer whose weights were normally distributed with mean 12 ounces and standard deviation 0.8 ounce. Among a sample of 1000 of those​ peaches, about how many could be expected to have weights between 11.3 and 13.2 ​ounces? The number of peaches expected to have weights between 11.3 and 13.2 ounces is _______

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
100%

A​ fruit-packing company produced peaches last summer whose weights were normally distributed with mean 12 ounces and standard deviation 0.8 ounce. Among a sample of 1000 of those​ peaches, about how many could be expected to have weights between 11.3 and 13.2 ​ounces?

The number of peaches expected to have weights between 11.3 and 13.2 ounces is _______


​(NOTE: Round to the nearest whole number)

Because the curve is symmetric
about 0, the area between z=0 and
a negative value of z can be found
by using the corresponding positive
value of z.
Areas under the Normal Curve
The column under A gives the
proportion of the area under the
entire curve that is between z= 0
and a positive value of z.
A
0.497
0.497
0.497
0.497
0.497
0.497
0.497
0.497
0.497
0.497
0.497
A
0.464
0.465
0.466
0.466
0.467
0.468
0.469
0.469
0.470
0.471
0.471
0.472
0.473
0.473
0.474
0.474
0.475
0.476
0.476
0.477
0.477
0.478
0.478
0.479
0.479
0.480
0.480
0.481
0.481
0.482
A
0.492
0.492
0.492
0.492
0.493
0.493
0.493
0.493
0.493
0.494
0.494
0.494
0.494
0.494
0.494
0.495
0.495
0.495
0.495
0.495
0.495
0.495
0.496
0.496
0.496
0.496
0.496
0.496
0.496
0.496
A
Iz
0.482
2.40
0.483
2.41
2.42
0.483
2.43
0.483
2.44
0.484
2.45
0.484
2.46
0.485
0.485
2.47
2.48
0.485
2.49
0.486
0.486
2.50
2.51
0.486
0.487
2.52
2.53
0.487
2.54
0.487
0.488
2.55
2.56
0.488
2.57
0.488
2.58
0.489
0.489
2.59
0.489
2.60
0.490
2.61
2.62
0.490
0.490
2.63
2.64
0.490
0.491
2.65
0.491
2.66
0.491
2.67
0.491
2.68
2.69
0.492
3.00
3.01
3.02
3.03
3.04
3.05
3.06
3.07
3.08
3.09
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
2.70
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.499
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
1.80
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
1.81
2.71
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
1.91
2.81
0.498
2.82
2.83
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99
2.00
0.498
0.498
2.84
0.498
2.85
0.498
2.86
0.498
2.87
2.88
2.89
2.90
0.498
0.498
0.498
0.498
2.01
2.91
0.498
2.02
2.03
2.04
2.05
2.06
2.07
2.08
2.09
2.92
2.93
2.94
2.95
2.96
0.498
0.498
0.498
0.498
0.498
2.97
0.499
2.98
2.99
0.499
0.499
Transcribed Image Text:Because the curve is symmetric about 0, the area between z=0 and a negative value of z can be found by using the corresponding positive value of z. Areas under the Normal Curve The column under A gives the proportion of the area under the entire curve that is between z= 0 and a positive value of z. A 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 A 0.464 0.465 0.466 0.466 0.467 0.468 0.469 0.469 0.470 0.471 0.471 0.472 0.473 0.473 0.474 0.474 0.475 0.476 0.476 0.477 0.477 0.478 0.478 0.479 0.479 0.480 0.480 0.481 0.481 0.482 A 0.492 0.492 0.492 0.492 0.493 0.493 0.493 0.493 0.493 0.494 0.494 0.494 0.494 0.494 0.494 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 A Iz 0.482 2.40 0.483 2.41 2.42 0.483 2.43 0.483 2.44 0.484 2.45 0.484 2.46 0.485 0.485 2.47 2.48 0.485 2.49 0.486 0.486 2.50 2.51 0.486 0.487 2.52 2.53 0.487 2.54 0.487 0.488 2.55 2.56 0.488 2.57 0.488 2.58 0.489 0.489 2.59 0.489 2.60 0.490 2.61 2.62 0.490 0.490 2.63 2.64 0.490 0.491 2.65 0.491 2.66 0.491 2.67 0.491 2.68 2.69 0.492 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 2.70 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 1.80 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49 3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59 1.81 2.71 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 1.91 2.81 0.498 2.82 2.83 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 0.498 0.498 2.84 0.498 2.85 0.498 2.86 0.498 2.87 2.88 2.89 2.90 0.498 0.498 0.498 0.498 2.01 2.91 0.498 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.92 2.93 2.94 2.95 2.96 0.498 0.498 0.498 0.498 0.498 2.97 0.499 2.98 2.99 0.499 0.499
Because the curve is symmetric
about 0, the area betweenz =0
and a negative value of z can be
found by using the corresponding
positive value of z.
Areas under the Normal Curve
The column under A gives the
proportion of the area under the
entire curve that is between z= 0
and a positive value of z.
A
0.000
0.004
0.008
0.012
0.016
0.020
0.024
0.028
0.032
0.036
0.040
0.044
0.048
0.052
0.056
0.060
0.064
0.067
0.071
0.075
0.079
0.083
0.087
0.091
0.095
0.099
0.103
0.106
0.110
0.114
A
0.118
0.122
0.126
0.129
0.133
0.137
0.141
0.144
0.148
0.152
0.155
0.159
0.163
0.166
0.170
0.174
0.177
0.181
0.184
0.188
0.191
0.195
0.198
0.202
0.205
0.209
0.212
0.216
0.219
0.222
A
0.226
0.229
0.232
0.236
0.239
0.242
0.245
0.249
0.252
0.255
0.258
0.261
0.264
0.267
0.270
0.273
0.276
0.279
0.282
0.285
0.288
0.291
0.294
0.297
0.300
0.302
0.305
0.308
0.311
0.313
A
0.316
0.319
0.321
0.324
0.326
0.329
0.331
0.334
0.336
0.339
0.341
0.344
0.346
0.348
0.351
0.353
0.355
0.358
0.360
0.362
0.364
0.367
0.369
0.371
0.373
0.375
0.377
0.379
0.381
0.383
A
0.385
0.387
0.389
0.391
0.393
0.394
0.396
0.398
0.400
0.401
0.403
0.405
0.407
0.408
0.410
0.411
0.413
0.415
0.416
0.418
0.419
0.421
0.422
0.424
0.425
0.426
0.428
0.429
0.431
0.432
0.00
0.433
0.434
0.436
0.437
0.438
0.439
0.441
0.442
0.443
0.444
0.445
0.446
0.447
0.448
0.449
0.451
0.452
0.453
0.454
0.454
0.455
0.456
0.457
0.458
0.459
0.460
0.461
0.462
0.462
0.463
1.20
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
0.01
0.91
1.21
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
0.11
1.01
1.31
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
0.21
1.11
1.41
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
Transcribed Image Text:Because the curve is symmetric about 0, the area betweenz =0 and a negative value of z can be found by using the corresponding positive value of z. Areas under the Normal Curve The column under A gives the proportion of the area under the entire curve that is between z= 0 and a positive value of z. A 0.000 0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036 0.040 0.044 0.048 0.052 0.056 0.060 0.064 0.067 0.071 0.075 0.079 0.083 0.087 0.091 0.095 0.099 0.103 0.106 0.110 0.114 A 0.118 0.122 0.126 0.129 0.133 0.137 0.141 0.144 0.148 0.152 0.155 0.159 0.163 0.166 0.170 0.174 0.177 0.181 0.184 0.188 0.191 0.195 0.198 0.202 0.205 0.209 0.212 0.216 0.219 0.222 A 0.226 0.229 0.232 0.236 0.239 0.242 0.245 0.249 0.252 0.255 0.258 0.261 0.264 0.267 0.270 0.273 0.276 0.279 0.282 0.285 0.288 0.291 0.294 0.297 0.300 0.302 0.305 0.308 0.311 0.313 A 0.316 0.319 0.321 0.324 0.326 0.329 0.331 0.334 0.336 0.339 0.341 0.344 0.346 0.348 0.351 0.353 0.355 0.358 0.360 0.362 0.364 0.367 0.369 0.371 0.373 0.375 0.377 0.379 0.381 0.383 A 0.385 0.387 0.389 0.391 0.393 0.394 0.396 0.398 0.400 0.401 0.403 0.405 0.407 0.408 0.410 0.411 0.413 0.415 0.416 0.418 0.419 0.421 0.422 0.424 0.425 0.426 0.428 0.429 0.431 0.432 0.00 0.433 0.434 0.436 0.437 0.438 0.439 0.441 0.442 0.443 0.444 0.445 0.446 0.447 0.448 0.449 0.451 0.452 0.453 0.454 0.454 0.455 0.456 0.457 0.458 0.459 0.460 0.461 0.462 0.462 0.463 1.20 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 0.01 0.91 1.21 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 0.11 1.01 1.31 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 0.21 1.11 1.41 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman