A fruit-packing company produced peaches last summer whose weights were normally distributed with mean 15 ounces and standard deviation 0.8 ounce. Among a sample of 1000 o those peaches, about how many could be expected to have weights of more than 12.2 ounces? Click here to see page 1 of the table for areas under the standard normal curve. Click here to see page 2 of the table for areas under the standard normal curve. The number of peaches expected to have weights of more than 12.2 ounces is (Round to the nearest whole number as needed.)

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
100%
A fruit-packing company produced peaches last summer whose weights were normally distributed with mean 15 ounces and standard deviation 0.8 ounce. Among a sample of 1000 of
those peaches, about how many could be expected to have weights of more than 12.2 ounces?
Click here to see page 1 of the table for areas under the standard normal curve.
Click here to see page 2 of the table for areas under the standard normal curve.
The number of peaches expected to have weights of more than 12.2 ounces is
(Round to the nearest whole number as needed.)
C...
Transcribed Image Text:A fruit-packing company produced peaches last summer whose weights were normally distributed with mean 15 ounces and standard deviation 0.8 ounce. Among a sample of 1000 of those peaches, about how many could be expected to have weights of more than 12.2 ounces? Click here to see page 1 of the table for areas under the standard normal curve. Click here to see page 2 of the table for areas under the standard normal curve. The number of peaches expected to have weights of more than 12.2 ounces is (Round to the nearest whole number as needed.) C...
Standard Normal Curve Areas (page 1)
Areas under the Normal Curve
The column under A gives the
proportion of the area under the
entire curve that is between z = 0
and a positive value of z.
Areas under the Normal Curve
The column under A gives the
proportion of the area under the
entire curve that is between z=0
and a positive value of z.
A
Z
0 z
z
A
0.226 0.90 0.316 1.20
0.229 0.91 0.319 1.21
0.232 0.92 0.321
1.22
0.236 0.93 0.324 1.23
0.239 0.94 0.326 1.24
0.242 0.95
0.245 0.96
Z
Z
A
z
0.00
0.122 0.61
0.255 0.99
0.339 1.29
0.401 1.59
0.258 1.00
0.341 1.30
0.403 1.60
0.344 1.31 0.405 1.61
0.407 1.62
0.408 1.63
A
0.000 0.30 0.118 0.60
0.01 0.004 0.31
0.02 0.008 0.32 0.126 0.62
0.03 0.012 0.33 0.129 0.63
0.04 0.016 0.34 0.133 0.64
0.05 0.020 0.35 0.137 0.65
0.06 0.024 0.36 0.141 0.66
0.07 0.028 0.37 0.144 0.67
0.08
0.032 0.38 0.148 0.68
0.09 0.036 0.39 0.152 0.69
0.10 0.040 0.40 0.155 0.70
0.11 0.044 0.41 0.159 0.71
0.12 0.048 0.42 0.163
0.72
0.13 0.052 0.43 0.166 0.73
0.14 0.056 0.44 0.170 0.74
0.15 0.060 0.45 0.174 0.75
0.16 0.064 0.46 0.177 0.76
0.17 0.067 0.47 0.181 0.77
0.18 0.071 0.48 0.184 0.78
0.19 0.075 0.49 0.188 0.79
0.20 0.079 0.50 0.191 0.80
0.21 0.083 0.51 0.195 0.81
0.22 0.087 0.52 0.198 0.82
0.23 0.091 0.53 0.202 0.83
0.24 0.095 0.54 0.205 0.84
0.25 0.099 0.55 0.209 0.85
0.26 0.103 0.56 0.212 0.86
0.27 0.106 0.57
0.216 0.87
0.28 0.110 0.58 0.219 0.88
0.29 0.114 0.59
0.261 1.01
0.264 1.02 0.346 1.32
0.267 1.03 0.348 1.33
0.270 1.04 0.351 1.34
0.273 1.05 0.353 1.35 0.411 1.65
0.276 1.06
0.279 1.07
0.410 1.64
0.355 1.36
0.413 1.66
0.358 1.37
0.415 1.67
0.282 1.08
0.416
1.68
0.418
1.69
0.419 1.70
0.360 1.38
0.285 1.09 0.362 1.39
0.288 1.10 0.364 1.40
0.291 1.11 0.367 1.41
0.294 1.12 0.369 1.42
0.371 1.43
0.297 1.13
0.300 1.14
0.302 1.15
0.305 1.16
0.308 1.17
0.311 1.18
0.222 0.89
0.313 1.19
Standard Normal Curve Areas (page 2)
0.249 0.97
0.252 0.98
Because the curve is symmetric
about 0, the area between z=0
and a negative value of z can be
found by using the corresponding
positive value of z.
0 z
z
A
z
0.385 1.50
0.387 1.51
0.389
1.52
0.391 1.53
0.493
0.494
0.494
2.80
0.494 2.81
0.494 2.82
0.393 1.54
0.329 1.25 0.394 1.55
0.331 1.26 0.396 1.56
0.334 1.27
0.398 1.57
0.336 1.28 0.400 1.58
0.421 1.71
0.422 1.72
1.73
0.424
0.373 1.44 0.425 1.74
0.426
1.75
0.375 1.45
0.377 1.46
0.379 1.47
0.428 1.76
0.429 1.77
0.381 1.48
0.431 1.78
0.383
1.49 0.432 1.79
A
0.433
0.434
0.436
0.437
0.438
0.439
0.499 3.34
0.499 3.35
0.499 3.36
0.499 3.37
0.499 3.38
0.499 3.39
0.499 3.40
0.499 3.41
0.499 3.42
0.499 3.43
0.499 3.44
0.499 3.45
0.441
0.442
0.443
0.444
0.445
0.446
0.447
0.448
0.449
0.451
0.452
0.453
0.454
0.454
0.455
0.456
0.457
0.458
0.459
0.460
0.461
0.462
0.462
0.463
Because the curve is symmetric
about 0, the area between z = 0 and
a negative value of z can be found
by using the corresponding positive
value of z.
A
z
A
A
z
0.497 3.00
0.497 3.01
0.497 3.02
0.497 3.03
0.493 2.75
3.05
3.06
0.493 2.76
0.485 2.46
0.485 2.47
0.493 2.77
Z
A Z
1.80 0.464 2.10 0.482 2.40 0.492 2.70
1.81 0.465 2.11 0.483 2.41
0.492 2.71
1.82 0.466 2.12 0.483 2.42 0.492 2.72
1.83 0.466 2.13 0.483
2.43 0.492 2.73
1.84 0.467 2.14 0.484 2.44 0.493 2.74 0.497 3.04
1.85 0.468 2.15 0.484 2.45
0.497
1.86 0.469 2.16
0.497
1.87 0.469 2.17
0.497 3.07
1.88 0.470 2.18
0.497 3.08
1.89 0.471 2,19
0.497 3.09
1.90
1.91
0.486 2.51
1.92 0.473 2.22 0.487 2.52
1.93 0.473 2.23 0.487 2.53
1.94 0.474 2.24 0.487 2.54
1.95 0.474 2.25 0.488 2.55
1.96 0.475 2.26 0.488 2.56
0.485 2.48
2.78
0.486 2.49
2.79
0.471 2.20
0.486 2.50
0.497 3.10
0.472 2.21
0.498 3.11
0.498 3.12
0.494 2.83
0.494 2.84
0.498 3.13
0.498 3.14
0.498 3.15
0.498 3.16
0.495 2.85
0.495 2.86
0.499 3.46
1.97 0.476 2.27
0.488 2.57
0.495 2.87
0.498 3.17
0.499 3.47
0.495 2.88
0.498 3.18
1.98 0.476 2.28 0.489 2.58
0.499 3.48
1.99 0.477 2.29 0.489 2.59 0.495 2.89 0.498 3.19 0.499 3.49
2.00 0.477 2.30 0.489 2.60 0.495 2.90 0.498 3.20 0.499 3.50
2.01 0.478 2.31 0.490 2.61 0.495 2.91 0.498 3.21 0.499 3.51
2.02 0.478 2.32 0.490 2.62 0.496 2.92 0.498 3.22
2.03 0.479 2.33 0.490 2.63 0.496 2.93
0.498 3.23
0.499 3.52
0.499 3.53
0.499 3.54
0.490 2.64
0.496 2.94
0.498 3.24
0.491 2.65
0.496 2.95
0.498 3.25 0.499 3.55
0.500
2.04 0.479 2.34
2.05 0.480 2.35
2.06 0.480 2.36
2.07 0.481 2.37
2.08 0.481 2.38
0.491 2.66
0.500
0.496 2.96
0.491 2.67 0.496 2.97
0.491 2.68 0.496 2.98
0.498 3.26 0.499 3.56
0.499 3.27 0.499 3.57 0.500
0.499 3.28 0.499 3.58 0.500
A
Z
A
0.499 3.30 0.500
0.499 3.31
0.500
0.499 3.32
0.499 3.33
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
Transcribed Image Text:Standard Normal Curve Areas (page 1) Areas under the Normal Curve The column under A gives the proportion of the area under the entire curve that is between z = 0 and a positive value of z. Areas under the Normal Curve The column under A gives the proportion of the area under the entire curve that is between z=0 and a positive value of z. A Z 0 z z A 0.226 0.90 0.316 1.20 0.229 0.91 0.319 1.21 0.232 0.92 0.321 1.22 0.236 0.93 0.324 1.23 0.239 0.94 0.326 1.24 0.242 0.95 0.245 0.96 Z Z A z 0.00 0.122 0.61 0.255 0.99 0.339 1.29 0.401 1.59 0.258 1.00 0.341 1.30 0.403 1.60 0.344 1.31 0.405 1.61 0.407 1.62 0.408 1.63 A 0.000 0.30 0.118 0.60 0.01 0.004 0.31 0.02 0.008 0.32 0.126 0.62 0.03 0.012 0.33 0.129 0.63 0.04 0.016 0.34 0.133 0.64 0.05 0.020 0.35 0.137 0.65 0.06 0.024 0.36 0.141 0.66 0.07 0.028 0.37 0.144 0.67 0.08 0.032 0.38 0.148 0.68 0.09 0.036 0.39 0.152 0.69 0.10 0.040 0.40 0.155 0.70 0.11 0.044 0.41 0.159 0.71 0.12 0.048 0.42 0.163 0.72 0.13 0.052 0.43 0.166 0.73 0.14 0.056 0.44 0.170 0.74 0.15 0.060 0.45 0.174 0.75 0.16 0.064 0.46 0.177 0.76 0.17 0.067 0.47 0.181 0.77 0.18 0.071 0.48 0.184 0.78 0.19 0.075 0.49 0.188 0.79 0.20 0.079 0.50 0.191 0.80 0.21 0.083 0.51 0.195 0.81 0.22 0.087 0.52 0.198 0.82 0.23 0.091 0.53 0.202 0.83 0.24 0.095 0.54 0.205 0.84 0.25 0.099 0.55 0.209 0.85 0.26 0.103 0.56 0.212 0.86 0.27 0.106 0.57 0.216 0.87 0.28 0.110 0.58 0.219 0.88 0.29 0.114 0.59 0.261 1.01 0.264 1.02 0.346 1.32 0.267 1.03 0.348 1.33 0.270 1.04 0.351 1.34 0.273 1.05 0.353 1.35 0.411 1.65 0.276 1.06 0.279 1.07 0.410 1.64 0.355 1.36 0.413 1.66 0.358 1.37 0.415 1.67 0.282 1.08 0.416 1.68 0.418 1.69 0.419 1.70 0.360 1.38 0.285 1.09 0.362 1.39 0.288 1.10 0.364 1.40 0.291 1.11 0.367 1.41 0.294 1.12 0.369 1.42 0.371 1.43 0.297 1.13 0.300 1.14 0.302 1.15 0.305 1.16 0.308 1.17 0.311 1.18 0.222 0.89 0.313 1.19 Standard Normal Curve Areas (page 2) 0.249 0.97 0.252 0.98 Because the curve is symmetric about 0, the area between z=0 and a negative value of z can be found by using the corresponding positive value of z. 0 z z A z 0.385 1.50 0.387 1.51 0.389 1.52 0.391 1.53 0.493 0.494 0.494 2.80 0.494 2.81 0.494 2.82 0.393 1.54 0.329 1.25 0.394 1.55 0.331 1.26 0.396 1.56 0.334 1.27 0.398 1.57 0.336 1.28 0.400 1.58 0.421 1.71 0.422 1.72 1.73 0.424 0.373 1.44 0.425 1.74 0.426 1.75 0.375 1.45 0.377 1.46 0.379 1.47 0.428 1.76 0.429 1.77 0.381 1.48 0.431 1.78 0.383 1.49 0.432 1.79 A 0.433 0.434 0.436 0.437 0.438 0.439 0.499 3.34 0.499 3.35 0.499 3.36 0.499 3.37 0.499 3.38 0.499 3.39 0.499 3.40 0.499 3.41 0.499 3.42 0.499 3.43 0.499 3.44 0.499 3.45 0.441 0.442 0.443 0.444 0.445 0.446 0.447 0.448 0.449 0.451 0.452 0.453 0.454 0.454 0.455 0.456 0.457 0.458 0.459 0.460 0.461 0.462 0.462 0.463 Because the curve is symmetric about 0, the area between z = 0 and a negative value of z can be found by using the corresponding positive value of z. A z A A z 0.497 3.00 0.497 3.01 0.497 3.02 0.497 3.03 0.493 2.75 3.05 3.06 0.493 2.76 0.485 2.46 0.485 2.47 0.493 2.77 Z A Z 1.80 0.464 2.10 0.482 2.40 0.492 2.70 1.81 0.465 2.11 0.483 2.41 0.492 2.71 1.82 0.466 2.12 0.483 2.42 0.492 2.72 1.83 0.466 2.13 0.483 2.43 0.492 2.73 1.84 0.467 2.14 0.484 2.44 0.493 2.74 0.497 3.04 1.85 0.468 2.15 0.484 2.45 0.497 1.86 0.469 2.16 0.497 1.87 0.469 2.17 0.497 3.07 1.88 0.470 2.18 0.497 3.08 1.89 0.471 2,19 0.497 3.09 1.90 1.91 0.486 2.51 1.92 0.473 2.22 0.487 2.52 1.93 0.473 2.23 0.487 2.53 1.94 0.474 2.24 0.487 2.54 1.95 0.474 2.25 0.488 2.55 1.96 0.475 2.26 0.488 2.56 0.485 2.48 2.78 0.486 2.49 2.79 0.471 2.20 0.486 2.50 0.497 3.10 0.472 2.21 0.498 3.11 0.498 3.12 0.494 2.83 0.494 2.84 0.498 3.13 0.498 3.14 0.498 3.15 0.498 3.16 0.495 2.85 0.495 2.86 0.499 3.46 1.97 0.476 2.27 0.488 2.57 0.495 2.87 0.498 3.17 0.499 3.47 0.495 2.88 0.498 3.18 1.98 0.476 2.28 0.489 2.58 0.499 3.48 1.99 0.477 2.29 0.489 2.59 0.495 2.89 0.498 3.19 0.499 3.49 2.00 0.477 2.30 0.489 2.60 0.495 2.90 0.498 3.20 0.499 3.50 2.01 0.478 2.31 0.490 2.61 0.495 2.91 0.498 3.21 0.499 3.51 2.02 0.478 2.32 0.490 2.62 0.496 2.92 0.498 3.22 2.03 0.479 2.33 0.490 2.63 0.496 2.93 0.498 3.23 0.499 3.52 0.499 3.53 0.499 3.54 0.490 2.64 0.496 2.94 0.498 3.24 0.491 2.65 0.496 2.95 0.498 3.25 0.499 3.55 0.500 2.04 0.479 2.34 2.05 0.480 2.35 2.06 0.480 2.36 2.07 0.481 2.37 2.08 0.481 2.38 0.491 2.66 0.500 0.496 2.96 0.491 2.67 0.496 2.97 0.491 2.68 0.496 2.98 0.498 3.26 0.499 3.56 0.499 3.27 0.499 3.57 0.500 0.499 3.28 0.499 3.58 0.500 A Z A 0.499 3.30 0.500 0.499 3.31 0.500 0.499 3.32 0.499 3.33 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON