A fruit-packing company produced peaches last summer whose weights were normally distributed with mean 15 ounces and standard deviation 0.4 ounce. Among a sample of 1000 of those peaches, about how many could be expected to have weights between 15.2 and 16 ounces? The number of peaches expected to have weights between 15.2 and 16 ounces is (Round to the nearest whole number as needed.)
A fruit-packing company produced peaches last summer whose weights were normally distributed with mean 15 ounces and standard deviation 0.4 ounce. Among a sample of 1000 of those peaches, about how many could be expected to have weights between 15.2 and 16 ounces? The number of peaches expected to have weights between 15.2 and 16 ounces is (Round to the nearest whole number as needed.)
A fruit-packing company produced peaches last summer whose weights were normally distributed with mean 15 ounces and standard deviation 0.4 ounce. Among a sample of 1000 of those peaches, about how many could be expected to have weights between 15.2 and 16 ounces? The number of peaches expected to have weights between 15.2 and 16 ounces is (Round to the nearest whole number as needed.)
A fruit-packing company produced peaches last summer whose weights were normally distributed with mean 15 ounces and standard deviation 0.4 ounce. Among a sample of 1000 of those peaches, about how many could be expected to have weights between 15.2 and 16 ounces?
The number of peaches expected to have weights between 15.2 and 16 ounces is
(Round to the nearest whole number as needed.)
Transcribed Image Text:Standard Normal Curve Areas (page 2)
Areas under the Normal Curve
The column under A gives the
proportion of the area under the
entire curve that is between z = 0
and a positive value of z.
0
Z
Z
Because the curve is symmetric
about 0, the area between z = 0 and
a negative value of z can be found
by using the corresponding positive
value of z.
A
Z
Z
A
Z
A
A
0.482 2.40
1.80
0.464 2.10
0.492 2.70
0.497
0.497
0.483 2.41
0.497 3.02
1.81 0.465 2.11
1.82 0.466 2.12
1.83 0.466 2.13
1.84 0.467 2.14
0.492 2.71
0.483 2.42 0.492 2.72
0.483 2.43 0.492 2.73
0.484
2.44 0.493 2.74
0.484 2.45 0.493 2.75
0.485 2.46 0.493 2.76
0.485 2.47 0.493 2.77
0.497 3.03
97 3.04
0.497 3.05
1.85
0.468 2.15
0.469 2.16
1.86
1.87
0.469 2.17
0.497 3.06
0.497
3.07
0.497 3.08
0.499 3.37
0.485 2.48
0.493 2.78
0.499 3.38
0.497 3.09
0.499
3.39
0.497 3.10
0.499 3.40
1.88 0.470 2.18
1.89 0.471 2.19 0.486 2.49
1.90 0.471 2.20 0.486 2.50
1.91 0.472 2.21 0.486 2.51
1.92 0.473 2.22 0.487 2.52
1.93 0.473 2.23 0.487 2.53
1.94 0.474 2.24 0.487 2.54
0.494 2.79
0.494 2.80
0.494 2.81
0.494 2.82
0.494 2.83
3.11 0.499 3.41
0.498
0.498
0.499
3.42
3.12
0.498 3.13
0.499
3.43
0.494
2.84
0.498 3.14
0.499
3.44
0.488 2.55
0.495
1.95 0.474 2.25
1.96
0.475 2.26
1.97 0.476 2.27
0.498 3.15 0.499 3.45
0.499
0.488 2.56
0.495
0.498 3.16
3.46
0.488 2.57
0.498 3.17
0.499 3.47.
2.85
2.86
0.495 2.87
0.495 2.88
0.495 2.89
0.495 2.90
1.98 0.476 2.28
0.498 3.18
0.499 3.48
0.489 2.58
2.59
0.498 3.19
0.499 3.49
0.498 3.20
0.499 3.50
0.498 3.21
0.498 3.22
1.99 0.477 2.29 0.489
2.00 0.477 2.30 0.489 2.60
2.01 0.478 2.31
2.02 0.478 2.32
2.03 0.479 2.33
2.04 0.479 2.34
2.05 0.480 2.35
2.06 0.480 2.36
2.07
0.481 2.37
2.08 0.481 2.38
2.09
0.490 2.61
0.490 2.62
0.490 2.63
0.490 2.64
0.491 2.65
0.491 2.66
0.495 2.91
0.496 2.92
0.496 2.93 0.498 3.23
0.496 2.94 0.498 3.24
0.496 2.95 0.498 3.25
0.496 2.96 0.498 3.26
0.496 2.97
0.496 2.98
0.499 3.51
0.499 3.52
0.499 3.53
0.499 3.54
0.499 3.55
0.499 3.56
0.491 2.67
0.499 3.27
0.499 3.57
0.491 2.68
0.499 3.28
0.499 3.58
0.482 12.39
0492 12 69
106
la 00
Z
3.00
3.01
A
Z
0.499
3.30
0.499 3.31
0.499 3.32
0.499 3.33
0.499
3.34
0.499
3.35
0.499
3.36
A
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
I
Transcribed Image Text:Standard Normal Curve Areas (page 1)
Areas under the Normal Curve
The column under A gives the
proportion of the area under the
entire curve that is between z = 0
and a positive value of z.
Z
A
z
A
0.00
0.000 0.30
0.118
0.60
0.01
0.004 0.31
0.122
0.61
0.02
0.008 0.32
0.126 0.62
0.05
0.06
0.024
0.03 0.012 0.33 0.129 0.63
0.04 0.016 0.34 0.133 0.64
0.020 0.35 0.137 0.65
0.36 0.141 0.66
0.07 0.028 0.37 0.144 0.67
0.08 0.032 0.38 0.148
0.68
0.09 0.036 0.39 0.152 0.69
0.10 0.040 0.40 0.155 0.70
0.11 0.044 0.41 0.159 0.71
0.12 0.048 0.42 0.163 0.72
0.13 0.052 0.43
0.166 0.73
0.14 0.056 0.44 0.170 0.74
0.15
0.060 0.45 0.174 0.75
0.16 0.064 0.46 0.177 0.76
0.17 0.067 0.47 0.181 0.77
0.18 0.071 0.48 0.184 0.78
0.19 0.075 0.49 0.188 0.79
0.20 0.079 0.50 0.191 0.80
0.21 0.083 0.51 0.195 0.81
0.22 0.087 0.52 0.198 0.82
0.23 0.091 0.53 0.202 0.83
0.24 0.095 0.54 0.205 0.84
0.25 0.099 0.55 0.209 0.85
0.26 0.103 0.56 0.212 0.86
0.27 0.106 0.57
0.216
0.87
0.28 0.110 0.58
0.219
0.88
0.29 0.114 0.59 0.222 0.89
CON
0
Z
Because the curve is symmetric
about 0, the area between z=0
and a negative value of z can be
found by using the corresponding
positive value of z.
A
Z
A
Z
A
0.316
0.385
1.50
0.226 0.90
1.20
0.229 0.91 0.319 1.21 0.387 1.51
1.22
0.389
1.52
1.23
0.391 1.53
1.24
0.393
1.54
1.55
1.56
1.57
0.232 0.92 0.321
0.236 0.93 0.324
0.239 0.94 0.326
0.242 0.95 0.329 1.25 0.394
0.245 0.96 0.331 1.26 0.396
0.249
0.97
0.334 1.27 0.398
0.98 0.336 1.28
0.99 0.339 1.29
1.00 0.341
1.30 0.403
1.01 0.344 1.31 0.405 1.61
1.02
0.267 1.03
0.252
0.400 1.58
0.255
0.401
1.59
0.258
1.60
0.261
0.264
0.407
1.62
0.346 1.32
0.348
0.351
1.33
0.408 1.63
1.34
0.410
1.64
0.353 1.35
0.411 1.65
0.270 1.04
0.273 1.05
0.276 1.06
0.279 1.07
0.282 1.08
0.355 1.36
0.413 1.66
0.358 1.37 0.415 1.67
0.360 1.38
0.416 1.68
0.362 1.39 0.418 1.69
0.364 1.40
0.367 1.41
0.369 1.42
0.424
0.285 1.09
0.288 1.10
0.291
1.11
0.294 1.12
0.297 1.13 0.371 1.43
0.300 1.14 0.373 1.44
0.302 1.15
0.375
1.45
0.305 1.16 0.377 1.46
1.17 0.379 1.47
1.18 0.381 1.48
0.383 1.49 0.432 1.79
0.425
0.426 1.75
0.428 1.76
0.308
0.429
1.77
0.311
0.431 1.78
0.313 1.19
Z
0.419 1.70
0.421 1.71
0.422
1.72
1.73
1.74
A
0.433
0.434
0.436
0.437
0.438
0.439
0.441
0.442
0.443
0.444
0.445
0.446
0.447
0.448
0.449
0.451
0.452
0.453
0.454
0.454
0.455
0.456
0.457
0.458
0.459
0.460
0.461
0.462
0.462
0.463
I
Features Features Normal distribution is characterized by two parameters, mean (µ) and standard deviation (σ). When graphed, the mean represents the center of the bell curve and the graph is perfectly symmetric about the center. The mean, median, and mode are all equal for a normal distribution. The standard deviation measures the data's spread from the center. The higher the standard deviation, the more the data is spread out and the flatter the bell curve looks. Variance is another commonly used measure of the spread of the distribution and is equal to the square of the standard deviation.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.