A freezer with dimensions of 4 m wide, 6 m long and 3 m high is under construction. The walls and ceiling are composed of 1.7 mm stainless steel (k = 15 W / [m ° C]), 10 cm thick foam insulation (k = 0.036 W / [m ° C]), a specific thickness of corkboard (k = 0.043 W / [m ° C]), and 1.8 cm thickness of wood (k = 0.104 W / [m ° C]). The inside of the freezer is maintained at -40 ° C. The ambient air outside the freezer is 32 ° C. The convective heat transfer coefficient is 5 W / (m K) on wooden walls and 2 W / (m² K) on stainless steel surfaces. If the outside air has a dew point of 29 ° C, calculate the thickness of the corkboard insulation that will prevent moisture condensation on the outer walls of the freezer. Calcu
A freezer with dimensions of 4 m wide, 6 m long and 3 m high is under construction. The walls and ceiling are composed of 1.7 mm stainless steel (k = 15 W / [m ° C]), 10 cm thick foam insulation (k = 0.036 W / [m ° C]), a specific thickness of corkboard (k = 0.043 W / [m ° C]), and 1.8 cm thickness of wood (k = 0.104 W / [m ° C]). The inside of the freezer is maintained at -40 ° C. The ambient air outside the freezer is 32 ° C. The convective heat transfer coefficient is 5 W / (m K) on wooden walls and 2 W / (m² K) on stainless steel surfaces. If the outside air has a dew point of 29 ° C, calculate the thickness of the corkboard insulation that will prevent moisture condensation on the outer walls of the freezer. Calcu
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A freezer with dimensions of 4 m wide, 6 m long and 3 m high is under construction. The walls and ceiling are composed of 1.7 mm stainless steel (k = 15 W / [m ° C]), 10 cm thick foam insulation (k = 0.036 W / [m ° C]), a specific thickness of corkboard (k = 0.043 W / [m ° C]), and 1.8 cm thickness of wood (k = 0.104 W / [m ° C]). The inside of the freezer is maintained at -40 ° C. The ambient air outside the freezer is 32 ° C. The convective heat transfer coefficient is 5 W / (m K) on wooden walls and 2 W / (m² K) on stainless steel surfaces. If the outside air has a dew point of 29 ° C, calculate the thickness of the corkboard insulation that will prevent moisture condensation on the outer walls of the freezer. Calculate the heat transfer rate through the walls and ceiling of this freezer. Ignore heat transfer from floors and corners of buildings. a. Thickness of corkboard insulation = cm.
b. Heat transfer rate through walls and ceilings = watt.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 9 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY