A freely spinning wheel of mass M and radius R and moment of inertia I has its center attached to a fixed point a distance H above the ground. A thin thread is wrapped around the edge of the wheel, and connected to a mass, M (same as the wheel). When the mass is released from rest, it falls the distance H in a time delta t. In terms of R, M, g, I and H, how much time, delta t, does this process take?
Rigid Body
A rigid body is an object which does not change its shape or undergo any significant deformation due to an external force or movement. Mathematically speaking, the distance between any two points inside the body doesn't change in any situation.
Rigid Body Dynamics
Rigid bodies are defined as inelastic shapes with negligible deformation, giving them an unchanging center of mass. It is also generally assumed that the mass of a rigid body is uniformly distributed. This property of rigid bodies comes in handy when we deal with concepts like momentum, angular momentum, force and torque. The study of these properties – viz., force, torque, momentum, and angular momentum – of a rigid body, is collectively known as rigid body dynamics (RBD).
A freely spinning wheel of mass M and radius R and moment of inertia I has its center attached to a fixed point a distance H above the ground. A thin thread is wrapped around the edge of the wheel, and connected to a mass, M (same as the wheel). When the mass is released from rest, it falls the distance H in a time delta t.
In terms of R, M, g, I and H, how much time, delta t, does this process take?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images