A forest has a population of cougars and a population of squirrels. Let a represent the number of cougars (in hundreds) above some level, denoted with 0. So x = 3 corresponds NOT to an absence of cougars, but to a population that is 300 below the designated level of cougars. Similarly, let y represent the number of squirrels (in hundreds) above a level designated by zero. The following system models the two populations over time: x' = 0.5x + y y' - x 2.5y Solve the system using the initial conditions (0) = 0 and y(0) = 1. t t x(t) = X e (t+1) e y(t) = t e te
A forest has a population of cougars and a population of squirrels. Let a represent the number of cougars (in hundreds) above some level, denoted with 0. So x = 3 corresponds NOT to an absence of cougars, but to a population that is 300 below the designated level of cougars. Similarly, let y represent the number of squirrels (in hundreds) above a level designated by zero. The following system models the two populations over time: x' = 0.5x + y y' - x 2.5y Solve the system using the initial conditions (0) = 0 and y(0) = 1. t t x(t) = X e (t+1) e y(t) = t e te
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
A forest has a population of cougars and a population of squirrels. Let xx represent the number of cougars (in hundreds) above some level, denoted with 0. So x=−3x=-3 corresponds NOT to an absence of cougars, but to a population that is 300 below the designated level of cougars. Similarly, let yy represent the number of squirrels (in hundreds) above a level designated by zero. The following system models the two populations over time:
x'=−0.5x+yx′=-0.5x+y
y'=−x−2.5yy′=-x-2.5y
Solve the system using the initial conditions x(0)=0x(0)=0 and y(0)=1y(0)=1.
x(t)x(t) = e−32t−(t+1)e−32tIncorrect
y(t)y(t) = e−32t−te−32tCorrect
Choose the graph that best represents the solution curve.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,