A force F = 10 sin at N acts on a displacement of x = 2 sin (t – n16)m. Determine (a) the work done during the first 6 s; (b) the work done during the first 12s.
A force F = 10 sin at N acts on a displacement of x = 2 sin (t – n16)m. Determine (a) the work done during the first 6 s; (b) the work done during the first 12s.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
dont copy solve it properly with all steps
![A force F = 10 sin at N acts on a displacement of x = 2 sin (nt – n16)m. Determine (a) the work done during the first 6 s; (b) the
work done during the first 12s.
Solution: Rewriting Eq. (3.7-1) as W=[Fx°dt and substituting F = Fo sin
t and x = X sin (
t- ) gives the work done per cycle of
W=nF0X0 sin ở
For the force and displacement given in this problem, Fo = 10 N, X = 2 m,
= n/6and the period
= 2s. Thus, in the 6 s specified in (a),
three complete cycles take place, and the work done is
W=3(nF0X0sin o)=3rx10x2 × sin 30°=94.2 N •m
The work done in part (b) is determined by integrating the expression for work between the limits 0 and 12s.
W=WF0X0[cos 30°f01/2sin nt cos at di+sin 30°f01/2sin nt dt]
=Tx10x2[-0.8664rcos 2rt+0.50(12–sin 2rt47)]01/2
=16.51N:1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8e6aee1d-099b-4e4a-ae82-3175b796b39a%2F8dd789ed-3a9c-4159-a559-50a3c9c60ed2%2Fd0kjyns_processed.png&w=3840&q=75)
Transcribed Image Text:A force F = 10 sin at N acts on a displacement of x = 2 sin (nt – n16)m. Determine (a) the work done during the first 6 s; (b) the
work done during the first 12s.
Solution: Rewriting Eq. (3.7-1) as W=[Fx°dt and substituting F = Fo sin
t and x = X sin (
t- ) gives the work done per cycle of
W=nF0X0 sin ở
For the force and displacement given in this problem, Fo = 10 N, X = 2 m,
= n/6and the period
= 2s. Thus, in the 6 s specified in (a),
three complete cycles take place, and the work done is
W=3(nF0X0sin o)=3rx10x2 × sin 30°=94.2 N •m
The work done in part (b) is determined by integrating the expression for work between the limits 0 and 12s.
W=WF0X0[cos 30°f01/2sin nt cos at di+sin 30°f01/2sin nt dt]
=Tx10x2[-0.8664rcos 2rt+0.50(12–sin 2rt47)]01/2
=16.51N:1
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY