A finned-tube heat exchanger is used as an air-conditioning condenser. During a steady state operation, refrigerant in the tubes remains 2-phase state throughout the heat exchanger at the condensing temperature 67 °C. Air enters the condenser at inlet temperature 22 °C and air mass flow rate is 0.7 kg/s. Refrigerant-side convection thermal resistance and tube wall conduction resistances are negligible. Airside total surface area is 8 m² and overall surface efficiency is 0.75. Airside average convection coefficient is 102 W/(m²K). The specific heat of air is 1,006 J/(kgK). Determine the heat transfer rate in W.
A finned-tube heat exchanger is used as an air-conditioning condenser. During a steady state operation, refrigerant in the tubes remains 2-phase state throughout the heat exchanger at the condensing temperature 67 °C. Air enters the condenser at inlet temperature 22 °C and air mass flow rate is 0.7 kg/s. Refrigerant-side convection thermal resistance and tube wall conduction resistances are negligible. Airside total surface area is 8 m² and overall surface efficiency is 0.75. Airside average convection coefficient is 102 W/(m²K). The specific heat of air is 1,006 J/(kgK). Determine the heat transfer rate in W.
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.49P
Related questions
Concept explainers
Heat Exchangers
Heat exchangers are the types of equipment that are primarily employed to transfer the thermal energy from one fluid to another, provided that one of the fluids should be at a higher thermal energy content than the other fluid.
Heat Exchanger
The heat exchanger is a combination of two words ''Heat'' and ''Exchanger''. It is a mechanical device that is used to exchange heat energy between two fluids.
Question

Transcribed Image Text:A finned-tube heat exchanger is used as an air-conditioning condenser. During a
steady state operation, refrigerant in the tubes remains 2-phase state throughout the
heat exchanger at the condensing temperature 67 °C. Air enters the condenser at inlet
temperature 22 °C and air mass flow rate is 0.7 kg/s. Refrigerant-side convection
thermal resistance and tube wall conduction resistances are negligible. Airside total
surface area is 8 m² and overall surface efficiency is 0.75. Airside average convection
coefficient is 102 W/(m²K). The specific heat of air is 1,006 J/(kgK). Determine the
heat transfer rate in W.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning

Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning