For a standard normal distribution , determine the probabilities and parts a though d below.
(attached are page 1 and 2 of the standard normal probability table) 
a) Find P(z≤1.59)=
(round two for decimal places as needed)
b) Find P(z ≤-1.28)= (round two for decimal places as needed)
c) Find P(-0.89≤z ≤1.76)= round two for decimal places as needed)
d) P(0.37 ≤z ≤2.12)= (round two for decimal places as needed)
Transcribed Image Text: For a standard normal distribution, determine the probabilities in parts a through d below.
Click here to view page 1 of the standard normal probability table.
Click here to view page 2 of the standard normal probability table.
Cumulative Probabilities for the Standard Normal Distribution (page 1)
a. Find P(zs1.59).
P(zs1.59) =
(Round to four decimal places as needed.)
Cumulative Probabilities for the Standard Normal Distribution
b. Find P(zs -1.28).
P(zs - 1.28) =
(Round to four decimal places as needed.)
%3D
Cumalatve
probability
Table entries
represent the shaded
area in the figure
c. Find P(-0.89 szs1.76).
P(-0.89 szs1.76) = O
(Round to four decimal places as needed.)
d. Find P(0.37szs2.12).
FIRST DIGIT OF Z
SECOND DIGIT OF z
FIRST DIGIT OFz
0.04
0.05
0.06
0.07
0.08
0.09
P(0.37 szs2.12) =
(Round to four decimal places as needed.)
0.00
0.01
0.02
0.03
-3.0
0.0013
0.0013
0.0013
0.0012
0.0012
0.0011
0.0011
0.0011
0.0010
0.0010
-3.0
-2.9
0.0019
0.0018
0.0018
0.0017
0.0016
0.0016
0.0015
0.0015
0.0014
0.0014
-2.9
-2.8
0.0026
0.0025
0.0024
0.0023
0.0023
0.0022
0.0021
0.0021
0.0020
0.0019
-2.8
-2.7
0.0035
0.0034
0.0033
0.0032
0.0031
0.0030
0.0029
0.0028
0.0027
0.0026
-2.7
-2.6
0.0047
0.0045
0.0044
0.0043
0.0041
0.0040
0.0039
0.0038
0.0037
0.0036
-2.6
-2.5
0.0062
0.0060
0.0059
0.0057
0.0055
0.0054
0.0052
0.0051
0.0049
0.0048
-2.5
-2.4
0.0082
0.0080
0.0078
0.0075
0.0073
0.0071
0.0069
0.0068
0.0066
0.0064
-2.4
-2.3
0.0107
0.0104
z0100
0.0099
0.0096
0.0094
0.009
0.0089
0.0087
0.0084
-2.3
-2.2
0.0139
0.0136
0.0132
0.0129
0.0125
0.0122
0.0119
0.01 16
0.0113
0.01 10
-2.2
-2.1
0.0179
0.0174
0.0170
0.0166
0.0162
0.0158
0.0154
0.0150
0.0146
0.0143
-2.1
-2.0
0.0228
0.0222
0.0217
0.0212
0.0207
0.0202
0.0197
0.0192
0.0188
0.0183
-2.0
-1.9
0.0287
0,0281
0.0274
0.0268
0.0262
0.0256
0.0250
0.0244
0.0239
0.0233
-1.9
-1.8
0.0359
0,0351
0,0344
0.0336
0.0329
0.0322
0.0314
0.0307
0.0301
0.0294
-1.8
-1.7
0.0446
0,0436
0.0427
0.0418
0.0409
0.0401
0.0392
0.0384
0.0375
0.0367
-1.7
-1.6
0.0548
0,0537
0.0526
0.0516
0.0505
0.0495
0.0485
0.0475
0.0465
0.0455
-1.6
ー1.5
0.0668
0,0655
0.0643
0.0630
0.0618
0.0606
0.0594
0.0582
0.0571
0.0559
-1.5
-14
0.0808
0.0793
0.0778
0.0764
0.0749
0.0735
0.0721
0.0708
0.0694
0.0681
-1.4
ー13
0.0968
0.0951
0.0934
0.0918
0.0901
0.0885
0.0869
0.0853
0.0838
0.0823
-13
-12
0.1151
0.1131
0.1112
0.1093
0.1075
0.1056
0.1038
0.1020
0.1003
0.0985
-1.2
-1.1
0.1357
0,1335
0.1314
0,1292
0.1 271
0.1251
0.1230
0.1210
0.1190
-1.0
0.1587
0,1562
0.1539
0.1170
-1.1
0,1515
0.1492
0.1469
0.1446
0.1423
-09
0.1841
0.1814
0.1788
0.1401
0.1379
-1.0
0.1762
0.1736
0.1711
0.1685
0.1660
0.1635
-08
0.2119
0.2090
0,2061
0.2033
0.1611
-0.9
0.2005
0.1977
0.1949
0.1922
0.7
0.2420
0.2389
0,1894
0.1867
0.2358
02327
0.2296
02266
-0.8
-0,6
0.2236
0.2206
0.2177
0.2148
0.2743
0.2709
0.2676
02643
-0.7
0.2611
0.2578
0.2546
0.2514
0.2483
-0.5
0.3085
0,3050
0.3015
0.2451
-0.6
0.2981
0.2946
0.2912
0.2877
0.2843
0.2810
-0.4
0.3446
0.3409
0.3372
0.2776
-0.5
0.3336
0.3300
0.3264
0.3228
0.3192
0.3
0.3821
0.3783
0.3745
0.3156
03121
0.4
0.3707
0.3669
0.3632
-0.2
0.4207
0.4168
0.3594
0.3557
0.3520
0.3483
0.4129
0.4000
04052
-0.3
-0.1
0.4602
04013
0.3974
0.3036
0.3897
0.3859
0.4562
0.4522
0.4483
0.4443
0.4404
-0.2
20.0
0.5000
0.4060
0.4364
0.4325
0.4286
0.4247
0.4920
0.4880
0,4840
0.4801
-0.1
0.4761
0.4721
0.4681
0.4641
0.01
0.02
0.0
0.03
0.04
0,05
FIRST DIGIT OF Z
0.06
0,07
0.08
0.09
こ
SECOND DIGIT OF z
FIRST DIGIT OF z
Print
Done
View an ExOmul
Transcribed Image Text: Cumulative Probabilities for the Standard Normal Distribution (page 2)
Cumulative Probabilities for the Standard Normal Distribution
Cumulative
probability
Table entries
represent the shaded
area in the figure
FIRST DIGIT OFz
SECOND DIGIT OF Z
FIRST DIGIT OF Z
2.
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.0
0.5000
0.5040
0.5080
0.5120
0.5160
0.5199
0.5239
0.5279
0.5319
05359
0.0
0.1
0.5398
0.5438
0.5478
0.5517
0.5557
0.5596
0.5636
0.5675
0.5714
05753
0.1
0.2
0.5793
0.5832
0.5871
0.5910
0.5948
0.5987
0.6026
0.6064
0.6103
0.6141
0.2
0.3
0.6179
0.6217
0.6255
0.6293
0.6331
0.6368
0.6406
0.6443
0.6480
0.6517
0.3
0.4
0.6554
0.6591
0.6628
0.6664
0.6700
0.6736
0.6772
0.6808
0.6844
0.6879
0.4
0.5
0.6915
0.6950
0.6985
0.7019
0.7054
0.7088
0.7123
0.7157
0.7190
0.7224
0.5
0.6
0.7257
0.7291
0.7324
0.7357
0.7389
0.7422
0.7454
0.7486
0.7517
0.7549
0.6
0.7
0.7580
0.7611
0.7642
0.7673
0.7704
0.7734
0.7764
0.7794
0.7823
0.7852
0.7
0.8
0.7881
0.7910
0.7939
0.7967
0.7995
0.8023
0.8051
0.8078
0.8106
0.8133
0.8
0.9
0.8159
0.8186
0.8212
0.8238
0.8264
0.8289
0.8315
0.8340
0.8365
0.8389
0.9
LO
0.8413
0.8438
0.8461
0.8485
0.8508
0.8531
0.8554
0.8577
0.8599
0.8621
1.0
1.1
0.8643
0.8665
0.8686
0.8708
0.8729
0.8749
0.8770
0.8790
0.8810
0.8830
1.1
1.2
0.8849
0.8869
0.8888
0.8907
0.8925
0.8944
0.8962
0.8980
0.8997
0.9015
1.2
1.3
0.9032
0.9049
0.9066
0.9082
0.9099
0.9115
0.9131
0.9147
0.9162
0.9177
1.3
1.4
0.9192
0.9207
0.9222
0.9236
0.9251
0.9265
0.9279
0.9292
0.9306
0.9319
1.4
1.5
0.9332
0.9345
0.9357
0.9370
0.9382
0.9394
0.9406
0.9418
0.9429
0.9441
1.5
1.6
0.9452
0.9463
0.9474
0.9484
0.9495
0.9505
0.95 15
0.9525
0.9535
0.9545
1.6
1.7
0.9554
0.9564
0.9573
0.9582
0.9591
0.9599
0.9608
0.9616
0.9625
0.9633
1.7
1.8
0.9641
0.9649
0.9656
0.9664
0.9671
0.9678
0.9686
0.9693
0.9699
0.9706
1.8
1.9
0.9713
0.9719
0.9726
0.9732
0.9738
0.9744
0.9750
0.9756
0.9761
0.9767
1.9
2.0
0.9772
0.9778
0.9783
0.9788
0.9793
0.9798
0.9803
0.9808
0.9812
0.9817
2.0
2.1
0.9821
0.9826
0.9830
0.9834
0.9838
0.9842
0.9846
0.9850
0.9854
0.9857
2.1
2.2
0.9861
0.9864
0.9868
0.9871
0.9875
0.9878
0.9881
0.9884
0.9887
0.9890
2.2
2.3
0.9893
0.9896
0.9898
0.9901
0.9904
0.9906
0.9909
0.9911
0.9913
0.9916
2.3
0.9918
0.9920
0.9922
0.9925
0.9927
0.9929
0.9931
0.9932
0.9934
0.9936
2.4
2.4
0.9938
0.9940
0.9941
0.9943
0.9945
0.9946
0.9948
0.9949
0.995 I
0.9952
2.5
2.5
0.9953
0.9955
0.9956
0.9957
0.9959
0.9960
0.9961
0.9962
0.9963
0.9964
2.6
2.6
0.9965
0.9966
0.9967
0.9968
0.9969
0.9970
0.9971
0.9972
0.9973
0.9974
2.7
2.7
0.9974
0.9976
0.9977
0.9977
0.9978
0.9979
0.9979
0.9980
0.9981
2.8
2.8
0.9975
0.9981
0.9982
0.9982
0.9983
0.9984
0.9984
0.9985
0.9985
0.9986
0.9986
2.9
2.9
0.9987
0.9987
0.9988
0.9988
0.9989
0.9989
0,9989
0.9990
0.9990
3.0
3.0
0.9987
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
FIRST DIGIT OF z
FIRST DIGIT OF z
SECOND DIGIT OF z
Print
Done
Features Features Normal distribution is characterized by two parameters, mean (µ) and standard deviation (σ). When graphed, the mean represents the center of the bell curve and the graph is perfectly symmetric about the center. The mean, median, and mode are all equal for a normal distribution. The standard deviation measures the data's spread from the center. The higher the standard deviation, the more the data is spread out and the flatter the bell curve looks. Variance is another commonly used measure of the spread of the distribution and is equal to the square of the standard deviation.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps